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Chapitre 1

Introduction a la théorie des codes'

1.1. Introduction

Cette théorie, initiée par Shannon en 1948 [5], traite la transmision
de messages au travers d'un canal bruité ainsi que la détection et si
possible la correction d’erreurs qui peuvent apparaitre. Ce canal peut
étre une ligne téléphonique, une transmission radio, télévision, satelli-
taire, un périphérique d’enregistrement, clé USB, CD-ROM, DVD etc.
Les erreurs peuvent étre a cause des conditions climatiques, du matériel
de transmission ou autres.

Un code est une transformation qui convertit la représentation d’une
information en une autre pouvant étre transmise a travers d’un canal
de communication. Le codage est I’écriture d’un message au moyen de
symboles d’un code. Le décodage est 1'opération inverse, c’est a dire
retrouver le message clair a partir de ces symboles.

Des codes permettent de détecter et/ou corriger des erreurs. Le
principe est d’ajouter des redondances dans le message codé de telle
facon que les erreurs puissent étre détectées et corrigées.

1.2. Exemples de codes

1.2.1. Exemple 1 ISNB. Chaque livre est identifi¢ par un nu-
méro appelé ISNB (International Standard Number Book) formé de
dix chiffres et parfois d’'un x & la fin. Le premier chiffre représente la
langue (0 pour Panglais, 2 pour le frangais, 3 pour l'allemand ...), le
bloc suivant de chiffre 'éditeur (Springer-Verlag en Allemagne : 540,
aux Etats-Unis : 387, etc.), le suivant le numéro du livre chez ’éditeur.
Le dixiéme est choisi de la facon suivante pour détecter les erreurs. Si
T1Zo - - - x10 est un ISBN, il doit vérifier xq 4+ 2x9 + - - - + 10279 = 0 mod
11. Si x4y doit étre égale & 10, on le note par x.

Si au lieu d’écrire x; on écrit x;, + e par erreur alors Zgl r; =
ke # 0 mod 11. On se rend compte alors qu’il y a erreur.

1. Pr. E. M. SOUIDI - souidi@fsr.ac.ma - Laboratoire de mathématiques, Infor-
matique et Applications - Cours Master CSI - 2011/12 - Version 0.8 (Brouillon).
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CHAPTER 1. INTRODUCTION A LA THEORIE DES CODES 4

Dans le cas de deux erreurs : la formule de vérification est
10
1.$1+' : +Z(CCZ+€Z)+ : '+j<l'j+€j>+‘ : '+1O.’L’10 = Z il’i+’i€i+j€j = i€i+j€j mod 11
i=1
ie; + je; peut étre nul par exemple 1.3+ 8.1 =0 mod 11 Il y a d’autre
possibilités.
Si deux chiffres sont interverties alors S°10 iw; = (K —k)(zp—ap) #
0. On se rend compte alors qu’il y a erreur aussi.
Supposons que la probabilité de saisir correctement un chiffre est
p = 0,98. Alors la probabilité de saisir correctement un ISBN est p? =
0, 833.
Si on utilise le dixiéme chiffre de correction la probabilité de saisir
correctement un ISBN est (éventuellement aprés détection) > p'® +
10p°(1 — p) = 0,983.

1.2.2. Exemple 2. Nous avons a transmettre les réponses oui ou
non au travers d’un canal bruité.

1) Si on code oui par 1 et non par 0. C'= {0, 1}. Aprés transmission
de 0 on peut recevoir 1 et 1 peut étre recu comme 0. Alors il n’y a aucun
moyen de vérifier s’il y a erreur.

2) Si on code oui par 11 et non par 00. C'= {00, 11} Aprés trans-
mission de 11, si on regoit 11 on admet que c¢’est bon. Si on recoit 01
ou 10 on constate qu’il y a erreur, car ces mots ne sont pas des mots
de C'. 00 est peut probable de le recevoir.

Dorénavant nous supposons que la probabilité de recevoir 0 et 1 en
erreur est p (< 1/2) pour les deux symboles 0 et 1. La probabilité p
est appelée probabilité d’erreur, elle dépend du canal de transmission
et non du code.

3) Si on code oui par 111 et non par 000. C' = {000, 111}. Aprés
transmission de 111, si on recoit 111 on admet que c’est bon. Si on
recoit 011, 110 ou 101 on constate qu’il y a erreur ce ne sont pas des
mots de C. 000 est peut probable de le recevoir. Dans ce cas ce code
peut détecter jusqu’a deux erreurs par mot. De plus il peut corriger s’il
y a une seule erreur par mot :

111, 110, 101, 011 sont décodé comme 111.

000, 001, 010, 100 sont décodé comme 000.

S’il y a plus d’une erreur on obtient un résultat faux, mais la pro-
babilité d’avoir plus d’une erreur est minime.

La probabilité de recevoir 111 en tant que 111 est (1 —p)3, en tant
que 110, 101 ou 011 est (1 — p)?p. La probabilité de recevoir 111 en
tant que 111, 110, 101 ou 011 est P(C) = (1 — p)®> +3(1 — p)?p =
(14 2p)(1 — p)%. 1l en est de méme pour 000.

Master C2SI - Théorie des codes I E. M. Souidi
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La probabilité quun mot soit décodé faux est P,,.(C) =1 — P(C)
c’est une caractéristique de C' et une fonction de p. P.,..(C') = (3—2p)p>.

Si p = 0,1 (en pratique p est plus petit) on a P,..(C) = (3 —
0,2)0,01 = 0,028 et P(C) =0,972.

Sip=0,010na P...(C)=0,000298 et P(C) = 0,999702.

Qu’en est-il si on prend C' = {0000,1111} 7 Certes P,..(C) diminue
mais ce code est moins efficace : le cotlt et le temps de transmission
augmentent.

La probabilité d’erreur sur une ligne téléphonique est p = 1077, elle
peut attendre 10~%. Cette contrainte est mise en place au niveau de la

couche 2, du modéle OSI : liaison de données.

1.2.3. Exemple 3. Le numéro de la sécurité sociale en France est
formé de 15 chiffres, 13 chiffres d’identification qu’on note K et deux
chiffres de redondance qu’on note C' calculés de telle facon que K + C
soit un multiple de 97.

1.2.4. Code barre EAN. Le code EAN (European Article Num-
bering) est utilisé dans le commerce et l'industrie pour identifier de
maniére univoque des articles.

Le code EAN de 13 chiffres se décompose ainsi : Le premier chiffre
isolé a gauche indique le pays ot a été codifié l'article (3 pour la France,
4 pour I’Allemagne, 0 pour les USA . . . ); Les 5 chiffres suivants per-
mettent d’identifier le fabricant (CNUF, Code national unifié fournis-
seur) ; Les 6 chiffres suivants donne la référence du produit (CIF, Code
interne fournisseur) ; Le dernier chiffre a droite est la clé de controle.

3| 290123 456786

FIGURE 1. Un code barre

Ce code est composé de 13 chiffres ciac11 - - - ¢1¢o. Les chiffres ciocy1 -+ - 1
identifie le produit et ¢y est une redondance calculé de la fagon suivante :
onpose a =" cyetb=3" ¢ 1 dou ¢y = 10— (a+ 3b) mod 10.

Master C2SI - Théorie des codes I E. M. Souidi
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Ce code permet de détecter les erreurs mais ne les corrige pas.

1.2.5. Q-Code.

FIGURE 2. Un lecteur de QR~code affiche http ://www.souidi.net

Le QR Code (Quick Response Code) développé par en 1994 by
Denso Wave pour l'industrie automobile au Japon, C’est un code a 2
dimensions qui permet de stocker des informations numériques (textes,
adresses de site web, etc.).

DEFINITION 1.2.1. On appelle taux d’erreur la probabilité qu’un
bit transmi par le canal soit différent du bit émis. C’est le rapport du
nombre de bits erronés sur le nombre de bit transmis.

1.3. Définitions de codes

On appelle alphabet de transmission un ensemble A de ¢ (> 1)
éléments qui peuvent étre transmis au travers d’un canal de communi-
cation. Pour n > 1, on note les éléments de A™, par vivs - - - v, et on les
appelle mots ou vecteurs.

DEFINITION 1.3.1. Un code C' de longueur n est une partie non vide
de A™. Ses éléments sont appelés mots du code.

Si g =2 (¢ = 3), C est appelé code binaire (trinaire) respective-
ment. Un code C est trivial si |[C| =1 ou C = A"

Un tel code, est aussi appelé code par bloc puisque tous ses mots
sont de méme longueur.

Master C2SI - Théorie des codes I E. M. Souidi
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Rappelons qu’une distance sur un espace X est une application
d: X — R vérifiant pour tout z, y et z de X :

ydz,y) =0=x=y

i) d(z,y) = d(y, z)

iii) d(z, z) < d(x,y) + d(y, 2)

DEFINITION 1.3.2. Soit © = 2122+ Ty, €t Y = Y1Yo - - Yp deux €lé-
ments de A"™. La distance de Hamming entre x et y est définie par

d(z,y) = {i, / xi # yi}l.
EXERCISE 1.4. Dans A ={0,1}* on a d(110,011) = 2.

EXERCISE 1.5. Vérifier que la distance de Hamming est bien une
distance.

DEFINITION 1.5.1. La distance minimale d’un code C, notée d(C)
est définie par

d(C) = min{d(z,y) /z,y € C, x # y}

EXEMPLE 1.5.2. Pour C = {000,111} on a d(C) = 3 et Pour
C' = {0000,1110,0111} on a d(C) = 2.

Le taux de correction d’un code C est définie par @.

Le taux d’information ou rendement d’un code C est R = 27 c’est
le rapport de l'information utile sur I'information totale transmise a
travers le canal.

DEFINITION 1.5.3. Deux codes Cy et Cy dans A™ sont équivalents si
Cy est obtenu de Cy en appliquant a tous les mots de C; une permuta-
tion fixe de coordonnées et a chaque coordonnées une permutation de
["alphabet.

DEFINITION 1.5.4. Soit o une permutation de {1,--- ,n} et x =
(x1,--- ,2n) un mot de A™; on note : (x) = (Toq), ", Tom)) ON
définit ainsi une permutation de A™. On dit que deuzr codes C et C'

sont équivalents, ssi, il existe une une permutation o de {1,--- n}
telle que : C" = a(C).

1.6. Capacité de détection et de correction d’un code

Supposons qu’on transmet un mot x d’un code C' et qu’ on recoit
y. Si y € C, fort probablement y = z. Mais si y ¢ C il y a une ou
plusieurs erreurs. Dans ce cas on décode y comme étant le mot 2’ € C'
le plus proche de y.

Par [z] on note la partie entiére du nombre réel z.

Master C2SI - Théorie des codes I E. M. Souidi




CHAPTER 1. INTRODUCTION A LA THEORIE DES CODES 8

THEOREME 1.6.1. Soit C' un code de distance minimale d et t =
[(d—1)/2] alors :

i) C peut détecter jusqu’a d — 1 erreurs dans tout mot du code
transmas.

ii) C peut corriger jusqu’a t erreurs dans tout mot du code transmis.

DEMONSTRATION. Si un mot z est transmis et y # x est recu alors
d(x,y) est le nombre d’erreurs apparus lors de la transmission.

i) Si le nombre d’erreurs est < d — 1 alors d(z,y) < d douy ¢ C
car d(C') = d. Donc au plus d — 1 erreurs sont détectées. Si d(z,y) > d
alors y peut (ne pas) étre un mot du code. Donc il est possible que plus
de d — 1 erreurs ne soient détectées.

ii) Supposons que le nombre d’erreurs est < ¢. Alors d(z,y) < t. x
est le mot unique tel que d(x,y) < t. Soit &’ € C tel que d(z',y) <t
alors d(z,2") < d(z,y) + d(y,2") < 2t < d—1dou d(x,2') < d donc
x = 2. Donc y est décodé comme étant x. Mais s’il y a plus de t erreurs
alors un mot =’ (# ) de C peut étre plus proche de y, dans ce cas le
décodage est faux. 0

Soit C un code de distance minimale d. Par [x] on note la partie

entiére de z. L’entier t = [ﬂ} s’appelle capacité de correction du code

2
C.

t est le plus grand entier tel que les sphéres Hamming de rayon t
centrées en des mots de C sont disjointes.

REMARQUE 1.6.2. Si un code est t-erreurs alors sa distance mini-
male est 2t + 1 ou 2t + 2.

Soit un code de longueur n, de distance minimale d et de cardinal
M sur un alphabet & ¢ éléments est noté (n, M, d)-code.

Les propriétés d’un "bon” code sont :

- petite longueur n (pour réduire le cout et la vitesse de transmis-
sion)

- M grand (pour pouvoir transmettre tout message)

- grande distance minimale (pour corriger plus de mots)

Ces propriétés sont liées entre elles. Par exemple pour n fixe et M
grand, d est forcément petit.

Si on veut agrandir d, M se trouve réduit. Inversement, si on veut
agrandir M, d se trouve réduit.

Le probléme principale de la théorie des codes est le suivant : pour
n et d donnés, trouver un code avec M le plus grand possible.

Soit A,(n,d) la plus grande valeur possible de M tel qu’il existe un
(n, M, d)-code.

Master C2SI - Théorie des codes I E. M. Souidi
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Un tel code est appelé code optimal si M = A,(n,d). Il est noté
(n, %, d)-code. Tout code optimal est nécessairement maximal. On cherche
une borne supérieure de A,(n, d).

EXERCISE 1.7. Montrer que :
Ay(n, 1) =¢q" et Ay(n,n) =q.
Si d est pair, alors As(n,d) = Ay(n —1,d —1).

1.8. Bornes sur les codes

Soit u € A™ un entier positif r < net B.(u) = {v € A" | d(u,v) <r}
la boule de centre u et de rayon r. C’est 'ensemble des mots qui dif-
férent de x en au plus r positions.

LEMME 1.8.1. Soit q le nombre d’éléments de A. Le nombre des
éléments de B,.(u) est

0 W) =3 () -1

m=0

DEMONSTRATION. Soit © = wjug---u, et v = vivy---v, € A"
pour m tel que 0 < m < r on considére {v € A" | d(u,v) =m}.

Il y a m indices 7 tels que u; # v;. Les m composantes peuvent
étre choisies de (::1) facons. Pour chaque indice i, v; peut étre choisi
de (¢ — 1) fagons. Donc le nombre de mots tels que d(u,v) = m est
(")(g —1)™. Dou le lemme. O

m

D’aprés le Lemme 1 V,(n, r) est indépendant du centre u de la boule
B..(u).

REMARQUE 1.8.2. Soit C' C A™ un code de distance minimale d et
t =[(d—1)/2]. Les boules de rayon t, dont les centres sont des mots de
C, sont disjointes deux a deux. En effet supposons qu’il existe un mot
v € By(u) N By(v) ot u,u’ € C. Alors d(u,u’) < d(u,v) 4+ d(v,u’) <
2t < d absurde car d est la distance minimale. En particulier ['union
de toutes ces boules contient |C|.|B(u)| mots.

THEOREME 1.8.3. Soit ¢ > 2, n,d € N* et t = [(d —1)/2] alors le
nombre A,(n,d) de mots du code optimal vérifie

n n

< Ay(n,d) < —1

q
@ Vynt)

Vy(n,d—1)

La premiére inégalité dans 2 s’appelle borne de Gilbert-Varshamov
et la deuxiéme s’appelle borne de Hamming.

Master C2SI - Théorie des codes I E. M. Souidi
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DEMONSTRATION. Soit C' un (n, M, d)-code optimal. C' est alors
maximal. Tout mot de A™ est de distance < d — 1 d’un certain mot de
C. En effet, (s'il existe un mot de A™ de distance > d — 1 d’un mot de
C, on peut ajouter ce mot & C, ce qui contredirait que C' est maximal).
La réunion des boules de rayon d — 1 centrées en mots de C' couvrent
A" d’ou M.V, (n,d—1) > ¢" ce qui donne la premiére inégalité.

D’autre part, on a 2t + 1 < d. Les boules By(x) ou = € C sont
disjointes d’ott M.V (n,t) > ¢" ce qui donne la deuxiéme inégalité. [

PROPOSITION 1.8.4 (Inégalité de Singleton).
(3) Aq(n,d) < ¢~

DEMONSTRATION. Il est facile de voir que A,(n,1) = ¢". Nous
montrons que pour tout net d > lona A,(n,d) < A,(n—1,d—1). Soit
Cun (n, M, d)-code sur 'alphabet A de cardinal q. Il existe ¢, ¢ € C tels
que d(c, ) = d, alors il existe un indice ¢ pour lequel les composantes
¢; et ¢, sont distinctes. A partir du code C on construit le code C’ formé
de tous les éléments de C auxquels on a supprimé la i composante.
Le code C' est de longueur n — 1 et de distance minimale d — 1. Si on
considére le code C optimal, on a alors |C| = Ay(n,d) = |C'| < A,(n—
1,d—1). Dou Ay(n,d) < Ay(ln —1,d—1) < --- < A,(n—d+1,1) =
qnch’l O

1.9. Codes Parfaits

Un code est dit parfait s’il ne contient aucune redondance inutile.
Les codes parfaits sont utilisés dans la compression de données. Un
code parfait est idéal pour décoder. en effet, tout mot recu appartient
a une et une seule boule de Hamming B(c,t) ¢ € C et t la capacité de
correction du code C'. Donc on peut décoder tout mot regu affecté d’au
plus ¢ erreurs.

DEFINITION 1.9.1. Soit C' un (q,n, M, d)-code. Alors C' est parfait
St

(@) M mz (2)a-vm =

En particulier un (2,n, M, d)-code est parfait si M. anzo (:L) = 2",

Dans un code parfait tout mot regu peut étre décodé. En effet
d’aprés I’équation 1.9.1 il découle que les boules centrées aux éléments
de C' et de rayon t sont disjointes deux a deux et forment une partition
de A™. Ainsi tout élément recu y € A" est dans une certaine boule
B, (t) on x € C donc peut étre décodé comme z.

Master C2SI - Théorie des codes I E. M. Souidi
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Dans un code parfait tout mot de A™ est a4 une distance < ¢ d’un
mot du code. Il s’en suit que la distance minimale d’un code parfait
doit étre un nombre impair.

La distance minimale d’un code parfait est un entier impair. En effet
supposons d(C) = 2t 4+ 2. Soit ¢ € C' et y € A" tels que d(c,y) =t + 1.
(on peut facilement construire un tel mot y). Il existe un ¢ € C tel
que y € Bu(t) puisque C est un code parfait. D’ou d(c, ) < d(c,y) +
did,y)t + 1+t =2t+1 < d ce qui contredit que d est la distance
minimale de C'.

REMARQUE 1.9.2. Dans le cas d’un code parfait les boules de rayon t
centrées aux éléments de C' forment une partition de A™. En particulier
tout mot recu est décodable.

PROPOSITION 1.9.3. Soit C' C A™ un code de distance minimale
d(C) = 2t + 1. Si pour tout mot y € A", il existe v € C tel que
d(z,y) <t alors C est un code parfait.

DEMONSTRATION. Les By(z) sont disjointes et M.By(u) =¢" O

1.10. Exercices
Exercice 1. Pour chacun des QR-codes suivants apporter des mo-

difications progressivement et tester sa lecteur a ’aide d’un lecteur
QR-code de votre téléphone portable.

Op:

Exercice 2. Un code ISBN (International Standard Book Number )
comporte dix chiffres xxs - - -z structurés en quatre segments A —
B — C — D séparés par un tiret. Les neuf premiers chiffres A — B — C
identifient le livre : A identifie la communauté linguistique, B 'éditeur
et C'le numéro d’ouvrage chez I’éditeur. La clé de controle D = x4 est
un symbole de parité qui est, soit un chiffre entre 0 et 9, soit la lettre
x qui représente 10. Cette clé z1g est telle que Zgl 1x; =0 mod 11.

(1) Vérifier que 0-387-54894-7 (Introduction to Coding Theory de
J. H. van Lint) est un code ISBN valide.

(2) Vérifier que 2-84225-007-1 n’est pas un ISBN valide. Peut-on le
corriger 7

Master C2SI - Théorie des codes I E. M. Souidi
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(3) Montrer que on peut détecter un chiffre inexact, ou l'interver-
sion de deux chiffres dans un ISBN (en supposant qu’il n’y ait
qu’une seule erreur de ce type).

Exercice 3. Le code de sécurité sociale francaise est formé de 13
chiffres contenant les informations suivantes :

- Sexe 1 :Homme, 2 :Femme;

- Année de naissance sur deux chiffres;

- Mois de Naissance sur deux chiffres;

- Département de naissance, 99 si étranger ;

- Code INSEE (Institut national de la statistique et des études
économiques) sur 3 chiffres de la commune ou du pays si étranger ;

- Numéro d’ordre INSEE de la personne sur 3 chiffres;

en plus d’une clef de deux chiffres.

Si N est I'entier de 13 chiffres et c la clef, la contrainte de vérification
est la relation

N +c =0 mod 97

(1) Quelle est la clef d’un individu dont le numéro de sécurité sociale
serait 1-71-04-78-646-378 7

(2) Un numéro de sécurité sociale est 2-xx-07-35-231-584, clé 19,
mais les caractéres xx sont illisibles. Pouvez-vous retrouver 1’an-
née de naissance de la personne en question ?

(3) Montrer que la clef de controle détecte une erreur sur un chiffre,
ainsi que 'interversion de deux chiffres consécutifs.

(4) Montrer que 97 est un nombre premier et que n = 96 est le plus
petit entier > 0 tel que 10" =1 mod 97.

(5) Montrer plus généralement que la clef de controle détecte 1'in-
terversion de deux chiffres quelconques.

Exercice 4. 1) Construire un code binaire de 4 mots de longueur 3
et de distance minimale 2.
2) Montrer qu’un code binaire de longueur 3 et de distance minimale
2 posséde au plus 4 mots.

Exercice 5. On considére le code binaire C = {00000, 01101, 10110,
11011} (2 bits + bit de parité +répétition des deux premiers bits )

1. Calculer d(C).

2. Quel est le nombre maximum d’erreurs par mot que ce code peut
détecter 7 corriger ?

3. Faire la liste des mots binaires que ce code ne peut pas décoder.

Exercice 6. Montrer que A3(10,6) < 120.
Master C2SI - Théorie des codes I E. M. Souidi
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Exercice 7. Montrer que si C est un ¢ — (3, M, 2)-code alors M < ¢°.
Montrer que A4,(3,2) = ¢* pour tout ¢ > 2. et qu'un ¢ — (3, ¢%,2)-code
existe.

Exercice 8. Montrer que A(2n,2d) > A(n,d).

Exercice 9. Calculer A(n,d) si n = d. Montrer que pour n impaire,
ces codes sont parfaits.

Exercice 10. Montrer que si n est un multiple de 3 et d = 2n/3, alors
A(n,d) = 4.

Exercice 11. Montrer que si d > 2n/3 alors A(n,d) = 2.

Exercice 12. Montrer
(1) Pour n > 2, A,(n,d) > qA,(n —1,d).
(2) Pour un code binaire As(n,2t + 1) = As(n + 1,2t + 2).
(3) La borne d’empilement des sphéres : pour ¢t = [41] ona A,(n, d)
qn
2o () (g = 1"

(4) La borne de Plotkin : On pose § = <X si d > 6n, alors A,(n,d) <
q

d
d—0n "

IN

(5) Un code est parfait si 1'égalité a lieu dans la formule d’empile-
ment des sphéres.

Exercice 13. Montrer qu’un code triaire de longueur 3 et de distance
minimale 2 ne peut avoir plus de 9 mots. Montrer qu'un (3,9, 2)-code
triaire existe.

Exercice 14. Soit C' un code de distance minimale 2¢+2. Si un mot v
est & la distance t + 1 d’un mot de C, montrer que v est a une distance
> t de tout mot de C.

Exercice 15. Soit C' un code binaire de longueur 16 tel que :
i) tout mot du code est de poids 6;

ii) la distance entre deux mots quelconques du code est 8.
Montrer que |C] < 16. Existe-t-il un tel code avec |C| =167

Exercice 16. Montrer que si il existe un (n, M, d)-code binaire alors
il existe un (n — 1, M’, d)-code binaire avec M’ > &L

Exercice 17. Soit d un nombre entier impaire. Montrer qu’'un (n, M, d)-
code binaire existe si et seulement si un (n + 1, M, d 4 1)-code binaire
existe.
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Exercice 18. Montrer que si les codes suivants existent, alors ils sont
parfaits.

- le (4,9, 3)-code triaire;

-le (27 — 1,221 3)- code binaire ofl r € N*;

- le (23, 212 7)-code binaire ;

- le (11,35, 5)-code triaire.
- le (90, o7 ,5)-code binaire ;

Exercice 19. Montrer qu'un code C' est parfait si pour tout z € A"
il existe un unique mot ¢ € C' qui réalise le minimum de d(c, z).

Exercice 20. Montrer qu’il existe un (8,4, 5) code binaire et qu’il est
optimal.

Exercice 21. Soit ¢ = 2. Six = (21, -+ ,x,) et y = (y1, -+ ,Yn) ON
note z xy = (1y1, -+ , TpYn). Montrer que w(z +y) = w(z) + w(y) —
2w(x *y)

Exercice 22. Soit C' un code binaire de longueur 5 et de distance 3
comportant le mot 00000.

1. Montrer que C' comporte au plus 1 mot ayant au moins 4 sym-
boles 1.

2. Combien C peut-il comporter de mots ayant exactement 1 ou 2
symboles 17

3. Montrer que C' a au plus 2 mots comportant exactement 3 fois
le symbole 1.

4. En déduire que tout code de longueur 5 et de distance 3 a au
plus 4 mots.

5. Construire un code de longueur 5 et de distance 3 ayant 4 mots.
Ce code est-il unique ?

Exercice 23. Soit C = {00---0,11---1} un code binaire de longueur
n impaire. C est parfait. Car tout y € {0,1}" est & une distance < ¢ =
(n—1)/2de00---00u 11---1.

Exercice 24. Soit un code C' de longueur n sur un alphabet A. On
appelle rayon de recouvrement du code C le plus petit rayon r tel
que I’ensemble des boules de rayon r centrées en chaque mot du code
forment un recouvrement de A”. On le note p(C).

Montrer qu’un code C' est parfait si et seulement si sa capacité de
correction est égal a son rayon de recouvrement.
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Chapitre 2

Codes linéaires '

Dans ce chapitre on note par F, ou IF, le corps fini a ¢ éléments.
Rappelons que le cardinal d’un corps fini est une puissance d’un nombre
premier. Pour tout entier n, F” est un [F-espace vectoriel de dimension
n.

2.1. Définition

DEFINITION 2.1.1. Soit F un corps fini et n un entier > 0. Un
code linéaire de longueur n et de dimension k sur F est un sous es-
pace vectoriel de F™ de dimension k. Un tel code est noté |n,k|-code
ou [n,k,d]-code quand on veut spécifier sa distance minimale. Si la
distance minimale d’un code est d alors ce code est noté

EXEMPLE 2.1.2. C' = {000,111} est un [3,1]-code linéaire sur le
corps L.

Le code binaire C = {000,111,011} n’est pas linéaire car 111 +
011 = 100 qui n’est pas un mot du code.

Soit C' un [n, k]-code linéaire sur un corps F,. On a |C| = ¢*. En
effet puisque C' est un espace vectoriel de dimension k, on sait que
C ~ F*. En particulier un [n, k]-code binaire a 2¥ mots.

2.2. Matrice génératrice
C’est une des deux matrices importantes associées a tout code li-
néaire.

DEFINITION 2.2.1. Soit C' un [n, k]-code linéaire. On appelle ma-
trice génératrice de C toute matrice k X n dont les lignes forment une

base de C.

Il est facile de voir qu'un [n, k]-code C' linéaire sur F est compléte-
ment déterminé par une matrice génératrice G de C. En plus

(5) C={v.G | veF}
1. Pr. E. M. SOUIDI - souidi@fsr.ac.ma - Laboratoire de mathématiques, Infor-
matique et Applications - Cours Master CSI - 2007/08 - Version 0.1 (Brouillon).
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1 01
1 11

C = {00.G = 000,01.G = 111,10.G = 101, 11.G = 010}

Par exemple si G = ( ) est une matrice 2 x 3 alors

La matrice G définie une bijection de F* — C par v — vG et ainsi
on représente ¢* messages distincts par des mots du code C. Chaque
mot de longueur k est codé par un mot de C' de longueur n. Le nombre
n — k est appelé redondance du code C.

Une matrice génératrice G d’un code C n’est pas unique. Puisque
les k colonnes de GG sont linéairement indépendantes, en effectuant des
opérations élémentaires sur les lignes, G peut étre transformée en G* =

I, © A ) ot Iy est la matrice identité d’ordre k et A est une matrice

k x (n — k). Les lignes de G et G* engendrent le méme sous espace C.
G* est appelée matrice génératrice canonique de C.
Si un code linéaire C' posseéde une matrice génératrice de la forme

( I, ¢ A ), on dit que le code C' est systématique.
Soit C' un [n, k]-code linéaire sur un corps F. Si G = ( I, A )

est la matrice génératrice canonique de C. Alors C' = {v.G | v € F*}

et v.G = viw.A on remarque que le codage ajoute n — k symboles de
redondance pour la détection d’erreurs par v.A.
. 1 10 . . . )
EXERCISE 2.3. Soit G = 10 1 ) une matrice généralrice d’un
code. Les mots de ce code sont 00.G = 000, 01.G = 101, 10.G = 110 ,
11.G =011

2.4. Code dual et matrice de controdle

Rappelons que si x = x1...2,, y = y1 - -y, € F" alors le produit
scalaire de x et y est x.y = x1y; + - - - + z,¥y,. Les vecteurs z et y sont
orthogonaux si x.y = 0.

DEFINITION 2.4.1. Soit C' un [n, k]-code linéaire sur un corps F. Le
code dual de C' est défini comme C+ = {y € F* | z.y = 0 pour tout x € C'}.

C* est aussi 'ensemble des solutions du systéme GX = 0 o G est
une matrice génératrice de C' et X un vecteur inconnu, (car si ¢ € C,
il existe v € F* tel que ¢ = vG d’ot ¢X = vGX = 0).

REMARQUE 2.4.2.
kerG = C*
Master C2SI - Théorie des codes I E. M. Souidi
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Si G est de rang k alors C est un sous espace vectoriel de F" de
dimension n — k.

THEOREME 2.4.3. Soit C' un |n, k]-code linéaire de matrice généra-
trice G. Alors :
1) C+ = Ker(G) 2) C* est un [n,n — k]-code linéaire.
3) (CH)" =C.

DEMONSTRATION. 1) Soit x € F", Gx = 0 si et seulement si x est
orthogonal a chaque lignes de G. Or, les lignes de G forment une base
de C. Donc Gz = 0 si et seulement si z € C*

2) D’aprés le théoréme du rang.

3) Soit z € C, alors si x.y = 0 pour tout y € C* on déduit que

x € (CL)L. Or si C est de dimension k alors C* est de dimension

n—kdon dim (C)" =n—(n—k)=k OnaC C (C)" et sont de
O

méme dimension donc sont égaux.

EXERCISE 2.5. Trouver le code dual du code de répétition de lon-
gueurn : {0---0,1---1}.

DEFINITION 2.5.1. Un code C' est auto-orthogonale si C C C*.

EXERCISE 2.6. Le dual du [4, 1]-code binaire linéaire C' = {0000, 1111}
est
¢+ = {0000, 1100, 1010, 1001, 0110, 0101, 0011, 1111}

qui est un [4,3]-code et C C C*+ ie C est auto-orthogonal.

DEFINITION 2.6.1. Soit C' un [n,k]-code linéaire, une matrice gé-
nératrice du code dual C+ est appelée matrice de controle ou matrice
de parité du code C.

La matrice génératrice d’un code C linéaire est la matrice de controle
du code C+.

Si H est une matrice de controle de C, on a z € C' < Ha! = 0
cad C' = kerH ce qui veut dire que la matrice de controle détermine
complétement le code. D’otu :

THEOREME 2.6.2. Soit C' un [n, k]-code linéaire sur un corps F de
matrice génératrice G et H une matrice de controle du code C. On a :
i) C={2G : z€F*} =Im(G).

i) C={zxelFf" | 2.H =0} = Ker(H).

i) GH' =0 et HG' = 0.

vi) Inversement, si G est une matrice k X n de rang k et H est une
matrice (n — k) x n de rang n — k, tel que GH' = 0. Alors H est
une matrice de controle de C' si et seulement si G est une matrice
génératrice de C.
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DEMONSTRATION. i) et ii) sont immédiats.

iii) D’aprés ii) ou on prend en particulier G'H' = 0 ou les G* sont
les lignes de G.

vi) Supposons que GH' = 0 et H est une matrice de controle.
Si on note par G; les lignes de G alors G;H' = 0 pour tout i d’ou
G, € C. Puisque le rang de G est k, les G;, 1 = 1--- k sont linéairement
indépendants, d’ou ils forment une base de C donc G est une matrice
génératrice de C.

De méme pour 'inverse. [l
EXERCISE 2.7. Trouver le code linéaire et binaire C' de matrice de
trle. I — 1 0101

controle. H=1{ 1 | 1 1 ¢

COROLLAIRE 2.7.1. Soit C un [n, k]-code linéaire et G = < I, © A

une matrice génératrice canonique de C. Alors H = ( —AY T )
est une matrice de controle de C. Inversement, si H = ( B ' I, . )
est une matrice de controle de C alors G = ( I, @ —Bt ) est une

matrice génératrice de C.

EXERCISE 2.8. On consideére le code binaire C = {000, 111}. Une
matice génératrice de C' est G = (1,1,1). Le code dual de C est C+ =

{000, 110,101,011} d’oa la matrice de controle de C' est H = < 1 (1) (1) ) .

DEFINITION 2.8.1. Soit C' et C' deuz [n, k]-codes linéaires sur un
corps F. Les codes C et C' sont équivalents s’il existe une bijection
f:C — C" donnée par f(xy, - ,x,) = (alxa(l),--- ,oznx(,(n)) ot
ag, -, ap € F* et o est une permutation de ’ensemble {1,--- ,n}.

THEOREME 2.8.2. Soit C' et C" deux [n,k]-codes linéaires sur un
corps F de matrices génératrices G et G' respectivement. Les codes C
et C" sont équivalents si l'une des matrices peut étre obtenue de [’autre
en effectuant les opérations suivantes :

1) opérations élémentaires sur les lignes

2) permutation de colonnes,

3) multiplication d’une colonne par un scalaire non nul de F.

Preuve : en exercice.

2.9. Distance minimale

DEFINITION 2.9.1. Le poids d’un mot x € F™ noté w(x) est défini
comme €tant égale au nombre de composantes non nulles de x.
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Siz,y € F* alors d(z,y) = w(x —y)

THEOREME 2.9.2. Soit C' un code linéaire, la distance minimale de
C est

d(C) =min{w(x) |z € C, x # 0} .

DEMONSTRATION. Soit d(C') = d. Il existe ¢, ¢’ € C' tel que d(c, ') =
d.Doic—c € Cetwlc—d) =d Soit z € C etz # 0 alors
w(z) = w(r —0) = d(z,0) > d . Ce qui prouve que d est le plus petit
poids de tout mot # 0 de C.

Soit C' un code a m éléments. La distance minimale de C' est obte-
nue :

- si C est linéaire on cherche le minimum de m — 1 poids de mots;;

- sinon on cherche le minimum de m(m — 1)/2 distances entre les
différents éléments de C.

Pour décrire un [n, k]—code linéaire il suffit de donner une base de
C.

U

THEOREME 2.9.3. Soit H une matrice de controle d’un [n, k]-code
linéaire sur un corps F. Alors d(C) est égale au nombre minimale de

colonnes de H linéairement dépendantes. Par conséquent d(C') < n —
k+ 1.

DEMONSTRATION. Soit X!, -, X" les colonnes de H et x € F™.
r € C & Hi' = n X'+ - 4+ 2, X" = 0. Soit d(C') = d. Alor
w(z) > det il existe un ¢ € C tel que w(c) = d , on note par ¢;,, - -+ , ¢,

les composantes non nulles de c. Alors He! = ¢, X' 4+ -+ + ¢, X" =
i, X"+ -+ ¢, X" =0 c’est a dire que H a d vecteurs linéairement
dépendants. Supposons qu’il existe r (< d) vecteurs X%, --- | X linéai-
rement dépendants. Alors il existe aq,---,a, non tous nuls tels que
a1 X" 4+ - 4+, X" = 0. Soit x € F" dont les composantes iy, - - , i,
soient égales a aq,--- ,q, respectivement et toutes les autres nulles.
Hz' =0 et 2 € C mais w(z) < d contradiction.

d est le nombre minimal de colonnes linéairement dépendantes de
H et ¢’est une matrice (n — k) x n de rang n — k d’ou tous n — k + 1
colonnes de H sont linéairement dépendants doncd <n—k+1. [

COROLLAIRE 2.9.4. Soit H une matrice de controle d’un [n, k|-code
linéaire. La distance minimale est d si et seulement si
i) d colonnes quelconques de H sont linéairement indépendants, et
i1) il existe d colonnes de H linéairement dépendants.
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THEOREME 2.9.5 (Borne de Singleton). La distance minimale d
d’un [n, k]-code linéaire sur F, est majorée par :

(6) d<n—k+1

DEMONSTRATION. Soit £ le sous-espace vectoriel de Fy formé par
les vecteurs dont les k& — 1 derniéres composantes sont nulles. On a
dim(E) =n—k+1 et dim(E)+ dim(C) = n+ 1 > n. Il existe un
x € E'UC non nul. Puisque a € E on a w(a) < n —k+ 1 et puisque
ac€ConadlC)<w()<n-—k+1.

La Borne de Singleton impose a un [n, k]-code linéaire de distance
minimale d d’avoir au moins n — k > d — 1 chiffres de redandances. U

DEFINITION 2.9.6. Un [n, k|-code linéaire est dit MDS si il atteint
la Borne de Singleton 6 cad d =n — k+ 1. MDS (mazimum separable
distance) peut se traduire par : plus grande distance minimale.

EXERCISE 2.10. Quelle est la distance minimale du code binaire
C [n,n — 1]-code linéaire de matrice de controle H = (1 --- 1)7¢
Le nombre minimal de vecteurs colonnes linéarrement dépendants est
deuz, d’ou d(C) = 2.

Quelle est la distance minimale du [10,9]-code linéaire C sur le
corps F11 de matrice de controle H = ( 1 23 456 7 89 10 )?
On a d(C) = 2.

Ce code est utilisé dans le traitement des ISBN. Voir chapitre pré-
cédant.

EXERCISE 2.11. Quelle est la distance minimale du [10,8]-code C
111111111 1>Q
123456 789 10/
On remarque que deux colonnes quelquonques sont linéairement in-
dépendantes. Dot d > 2 et d < n—k+1 =3 donc C est un code
correcteur d’une seule erreur.

PROPOSITION 2.11.1 (Borne de Plotkin). Soit C' un [n, k]-code li-
néaire sur F,. Alors la distance minimale d de C' vérifie

n(qg —1)¢"!
¢"—1

DEMONSTRATION. C' contient ¢* — 1 vecteurs non nuls de poids
minimal d. D’ot la somme de leur poids est d(¢* — 1). Soit C le sous-
espace vectoriel de C' dont la premiére composante de ses vecteurs est 0.
Ona C/C, =F,, dou |C] = ¢* . Donc il y a ¢* — ¢"*! vecteurs dont
la premiére composante est non nulle. En tout il y a n composantes,
donc d(q* — 1) < n(q* — ¢*1). O

Master C2SI - Théorie des codes I E. M. Souidi
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2.12. Décodage

Dans cette section nous traitons le décodage des codes linéraires.
Le principe générale de décodage est de trouver le mot du code le plus
proche du mot regu. La structure algébrique de ces codes permet de
construire une table a cette fin.

2.12.1. Décodage par table standard. Soit C' un sous espace
vectoriel de F™. En particulier C' est un sous groupe de F”. Pour z € F"
par définition = + C = {z +c¢|c € C}. x + C est appelé classe de z.
Deux éléments x et y de F” sont dans la méme classe si x —y € C'. Ces
classes forment une partition de F".

THEOREME 2.12.1. Soit C' C F™ un code linéaire et y € F". Le mot
x du code C' le plus proche de y est donné par x =y —e ot e est le mot
de plus petit poids dans la classe de y.

DEMONSTRATION. Pour tout ¢ € C, d(y,x) < d(y,c) ie w(y —z) <
w(y — ¢). D’ott y — x est le vecteur de poids minimal dans la classe de

Y. 0

DEFINITION 2.12.2. Soit C' un code linéaire dans F™. Un représen-
tant d’une classe de C' est un vecteur de poids minimal de cette classe.

Soit C' un [n, k]-code linéaire sur un corps F,. Puisque ’F;‘} = q"
et chaque classe de C' a ¢* éléments alors il y a N = ¢"* classes dans
C. Soit ey, -+ , ey leurs représentants. Supposons que w(e;) < w(e;q)
pourt=1,---, N—1.Soit e; = 0 le représentant de la classe C'+0 = C.
Soit C' = {c1,-+ ,cq} o G = ¢F et ¢; = 0. On peut arranger les ¢*
vecteurs dans une table, appelée table standard, N x G ot e; +¢; est le
terme dans (4, 7). Les termes de la ¢ ligne sont les éléments de e; + C,
avec les e; en premier. La premiére ligne est formée des mots du code

C.

€2 eg+c -+ extc - extcq
€; € +Cy - €i+Cj €; + cag
eN ey +c - ev+tc¢ - en—+tca

Pour décoder le mot recu y € F™. On cherche sa position dans la table.
Si y est le terme (7,7) de la table alors y = e; + ¢;. Puisque e; est de
plus petit poids il s’en suit que le mot du code le plus proche de y est
x =y — e; = ¢j. Donc le mot recu y et décodé comme le premier mot
de la colonne ou apparait y.
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REMARQUE 2.12.3. Les e; ne sont pas unique car si C' = {0000,1111}
alors la classe de 1100 est {1100,0011} qui a deuz mots de méme poids.

EXERCISE 2.13. Ecrire le tableauw standard du code binaire de ma-
1 0101

01011

Le code généré est C = {00000,01011,10101,11110}. Il y a 2° =8
classes. 1l y a 8 lignes dans le tableau standard. La distance minimale
est 3 ett = 1. Les cing mots de poids 1 produisent 5 classes. On chotsit
2 mots de poids 2 qui ne sont pas apparus dans les lignes précédentes.

00000 10101 01011 11110
10000 00101 11011 01110
01000 11101 00011 10110
00100 10001 01111 11010
00010 10111 01001 11100
00001 10100 01010 11111
11000 01101 10011 00110
10010 00111 11001 01100

Pour décoder le vecteur 01111, on remarque qu’il est dans la 3e
ligne. 1l est décodé comme 01011.

trice génératrice G = et décoder le mot re¢u 01111.

Pour n grand, cette méthode n’est pas convenable. On décrit une
autre méthode ci-dessous.

2.13.1. Décodage par syndrome.

DEFINITION 2.13.1. Soit C un |n, k|-code linéaire sur un corps F de
matrice de controle H. Pour tout y € F", le syndrome de y est définie

par S(y) = yH".

D’aprés 2.6.2 on sait que S(y) =0 < y € C. Soit y,y’ € F" alors
Sly) =SW) e (y—y)H =0 y—y € C. Dou deux mots ont
méme syndrome si et seulement si ils sont dans la méme classe de C'. 11
y a une bijection entre les classes de C' et les syndromes. On étabit une
table & deux colonnes, et sur chaque ligne un représentant d’une classe
et son syndrome. Pour décoder un mot y recu, on calcule son syndrome
S(y) et on cherche le représentant e tel que S(y) = S(e). Alors y est
décodé comme x = y — e. Cette procédure est appelée décodage du
syndrome.

EXERCISE 2.14. Traitons l’exemple précédent a 'aide de cette pro-
cédure.
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1 01 00
Une matrice de controle est H = 01 01 0 |. On calcule
11001

eH' pour tout représentant.
représentant syndrome

10000 101
01000 011
00100 100
00010 010
00001 001
11000 110
10010 111

S(y) = yG' = 100. On utilisant le tableau, y peut étre décodé comme
r=1y—e=01011.

2.14.1. Identités de MacWilliams. Soit C C F" un code li-
néaire. La distribution de poids de C est le vecteur A(C) = (Ao, A1, -+, An)
ou

A ={ceC|w(c) =i}

c’est a dire que la i®me composante de A(C) est le nombre de mots de
C de poids i. On note que Ay =1

La distribution de distance est B(C) = (By, By, -+ ,B,) ou

1 )
B; = E {(c1, o) €CxC|d(c1,co) =i}

B; est le nombre moyen de mots du code situé a la distance ¢ de C

Le polynome-énumérateur est A(X) =>",_,nA,X"

EXEMPLE 2.14.1. Pour C = F? on A; = (7)(q¢ — 1)’

REMARQUE 2.14.2. Dans le cas de codes linéaires A(C) et B(C)
coincident. En général non.

THEOREME 2.14.3. Soit C un [n, k]-code linéaire sur F, de polynome
énumérateur A(X) =5 ,_onA; X" Le polynome énumérateur du code
dual C* est

®  BE =00 ()

EXERCISE 2.15. Montrer que pour le code de Hamming binaire H,,
on :

i)
. n .
ZAZ‘ = ( 1) — Ai—l — (n — 1+ Q)Ai_Q
/L J—
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i) En déduire A'(z) = (14 2)" — A(z) — nzA(z) + 224'(2), A(0) = 1.

THEOREME 2.15.1. Soit C un code linéaire de longueur n. On note

B+ = B(C*) alors
: (i
B =12 ZB

Pr(i) = i]‘”z@ (ZL - 2)

=0
est le polynome de Krawtchouk de degré j.

o1

DEMONSTRATION. O

2.16. Rayon de couverture

Le rayon de couverture (Covering radius) est un paramétre fon-
damental des codes. Il caractérise la capacité maximale de correction
d’erreur. Les codes de petits rayons de couverture s’appliquent en com-
pression de données.

DEFINITION 2.16.1. Soit C un code dans A", le rayon de couverture
est le plus petit entier p tel que pour tout x € A" il existe ¢ € C tel que
d(xz,c) < p c’est a dire

= p(C) = maxd(zx,c) = maxmind(x, ¢
p = p(C) = max d(z, ¢) = max min d(, )

Soit C un code. Le rayon de couverture de C noté p = p(C) est le
plus petit entier r tel que Fy' est égal a la réunion des sphéres centrées
en mots de C et de rayon r. De facon équivalente

p(C) = maz,epymineecd(z, c)

Bien évidemment ¢ < p(C) et d < 2p+ 1. Sit = p(C) le corps C est
parfait.
On a
p = min{r : Vo(n,r).IC| = ¢"}
ot Vy(n,r) =>7_ (%) (g —1)" est le volume de la sphére de Hamming.
Pour les codes linéaires nous avons :

THEOREME 2.16.2. Soit C un code linéaire de matrice de controle
H. Alors
i) p(C) est le poids de lorbite de C de plus grand poids ;
ii) p(C) est le plus petit nombre r tel que le syndrome de tout vecteur
de 7" est une combinaison d’au plus r colonnes de H.
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Le Rayon de couverture p du code C est aussi le plus petit entier
tel que 'union des sphéres Hamming de rayon p centrées en des mots
de C est A™.

THEOREME 2.16.3. Soit C un [n, k]-code linéaire binaire de matrice
de controle H. p(C) est le plus petit entier positif tel que tout (n — k)-
uplet peut s’écrire comme somme d’au plus p colonnes de H.

DEMONSTRATION. Soit z € F} et s = Ha'. Si la somme des co-
lonnes 1,179, -+ ,1; est égale a s, alors le vecteur obtenu en ajoutant 1
aux coordonnées i1, 19, - - ,1; dans x appartient & C et inversement. Ce
qui montre que d(z,C) est le plus petit nombre de colonnes de H [

2.17. Construction de codes

La construction suivante introduite dans [1] s’appelle "Codes ma-
trice produit". Elle permet de construire de nouveaux codes.

DEFINITION 2.17.1. Soit Cy, Co, -+, Coy M codes linéaires de lon-
gueur n sur F, et A = (a;;) une matrice M x N & coefficients dans le
corps F,. Le code matrice produit noté [Cy---Cy].A est Uensemble de
tous les produits [c1- - cy]. A ot ¢; € C; est un vecteur colonne n X 1
pouri=1,---M.

Les mots du codes [C; - - - Cp,]. A sont les matrices n x N :

11011 + -+ amayr 0 Cnn@iN + o+ aamauN
c= : :
Cn1Q11 + -+ Cam@pn 0 CpiQiN + 0+ Cpp AN
Le code [Cy - - - Cyy]. A est un code de longueur n.N et ¢ = (¢1, -+, cpn)

ol ck:Zﬁlchiazj,h—lz(k—l)modnetj:1,~-- N

EXEMPLE 2.17.2. Pour les codes Cy et Cy et la matrice
11
+=(o1)

on obtient le code (ulu + v)
EXEMPLE 2.17.3. Pour les codes Cq, Cy et C3 et la matrice

1 21
A=1110
1 00

on obtient le code (u+ v+ w|2u + v)

EXEMPLE 2.174. Si A est la matrice identité d’ordre M alors
[Cy -+ Cp]. A est la somme direct des codes Cy, Co, -+, Cpy M
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Si Cq, Cq, -+, Cpr sont des codes linéaires de matrice génératrices
G1, Go, - -+, Gy respectivement alors [Cy - - - Cp].A a pour matrice gé-
nératrice

Giayp - Giain
G = :
Gyann -+ Guaun

2.18. Exercices

Exercice 1. Montrer qu'un code linéaire & 20 mots ne peut exister.

Exercice 2. Soit C le code formé de tous les vecteurs de poids pairs
de 5. Montrer que C est un code linéaire.

Exercice 3. Montrer que dans un code linéaire binaire, soit tous les
mots sont de poids pairs ou exactement la moitié sont de poids pairs.

Exercice 4. Soit n un entier positif. Montrer qu'une condition néces-
saire pour qu’il existe un code linéaire binaire parfait 1-correcteur de
longueur n est que U'entier n soit de la forme n = 2" — 1, ol r est un
entier positif.

Exercice 5. Soit C' un code linéaire binaire.

1. Montrer que si C est de longueur 17 et de dimension 10, il ne corrige
pas plus d’une erreur.

2. Montrer que si C' est de longueur 10 et de distance minimale 3, alors
|C| < 64.

Exercice 6. Soit C' et C' deux codes linéaires binaires de méme lon-
gueur. On défini C+C" = {x+2'/x € C,z € C'}. Montrer que C'+C’
est un code linéaire et (C + C')* = C+ + C"™.

Exercice 7. Montrer si il existe un [n, M, d] code linéaire binaire avec
d paire alors il existe un [n, M,d] code linéaire binaire dont tous les
mots sont sont de poids paire.

Exercice 8. Soit F un corps fini, combien y a-t-il de mots de F" de
poids 7?7

Exercice 9. Donner la distance de Hamming entre les mots 101101100010
et 101101010010 :

i) lorsqu’on les voit dans Fi?

ii) lorsqu’on les voit dans FS ou F4 est représenté par : 0 — 00, 1 — 01,
a— 10, a+1 — 11.
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Exercice 10. Soit (' et Cy deux codes linéaires dans F™. Montrer que
CiNCyet Cr+Cy =A{x1+29 /) 21 € Cp, 9 € Cy} sont des codes
linéaires.

Exercice 11. Montrer que le code C' = {0000,1010,0101,1111} est
linéaire et auto-orthogonal.

Exercice 12. Montrer que le code binaire linéaire C' de matrice gé-
nératrice

1000111
M=10101011
0011101

est auto-orthogonal. Trouvez le code dual de C.

Exercice 13. Trouvez la matrice génératrice canonique du [4, 2]-code
ternaire linéaire de matrice de controle M = < (1) (1) 1 ; > et expli-
citez les mots du code.

Exercice 14. On considére le code binaire C' dont la matrice généra-
trice est :

<

I
OO =
o = O
_ o O
O O =
— = O
o = O
— O

1. Donner tous les mots de C.
2. Donner la distance minimale de C, combien d’erreurs peut-on corri-
ger 7 Détecter ?

Exercice 15. On considére la matrice génératrice suivante d’un code
Of

OO =
o~ o
[
— O
[EET

1) Déterminer les mots du code, la distance minimale du code, un
tableau standard, la matrice de controle et la liste des syndromes de

C.
2) Corriger et décoder les messages suivants : 01101, 10000.
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Exercice 16. On considére le code C' dont une matrice génératrice
est

1100101
0111100
G=|0101011
0001100
000O0T1T11

1) En utilisant la méthode de Gauss, mettez C sous forme systématique.
En déduire une matrice de contréle H pour C.
2) Calculer le syndrome du mot 1111000. Pouvez-vous le décoder ?

Exercice 17. Soit C' le code linéaire sur F5 de matrice génératrice

3410
G:(0341)

1. Donner le nombre de mots de C'.

2. Le code (' est-il systématique ?

3. Déterminer une matrice de controle de C.

4. Calculer la capacité de correction ¢t de C. Le code est-il MDS?

5. Donner la table de contréle contenant tous les vecteurs erreurs pos-
sibles de poids < t.

6. Décoder quand c’est possible les mots 3001, 1101 et 2311.

Exercice 18. Soit C' le code linéaire sur F3 de matrice génératrice

2 1012
G—<02111>

1. Montrer que C' est systématique et en donner une matrice généra-
trice normalisée G'.

2. Encoder le message (12) avec G, puis avec G’ .

3. Construire une matrice de controle de C' et calculer sa distance mi-
nimale. Le code est-il MDS (Maximum Distance Separable) 7

4. On regoit le message 11102 codé par G. Quel est le message d’ori-
gine ? Le mot 12121 est-il un mot de code? Le décoder sachant qu’il a
été encodé par G.

Exercice 19. Si C est un code linéaire de type (n, k,d), on définit le
code étendu C' comme le code formé des mots (zq, -, 2,41) € Fy tels
que (z1,--+,2,) € C et X'z, = 0. Quel est le type de C'?

Exercice 20. Soit un entier r > 2 et Ham(2,7) le code de Hamming
binaire de longueur n = 2" — 1. Montrez que Ham(2,7) est unique,
dans le sens que tout code linéaire de paramétres [2" — 1,2" — 1 — r, 3]
est équivalent & Ham(2,r).
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Exercice 21. Montrez que les matrices M et M’ sont des matrices
génératrices du méme code si et seulement si M = PM' ou P est une
matrice inversible.

Exercice 22. Soit C' le code binaire linéaire de longueur 7 dont une
matrice de controle est

H = ( 10000111010010110010110100011110 )

1. Combien valent la dimension et la distance de C'? Ecrire une matrice
génératrice de C.

2. Décoder les mots recus r; = 00001110 et o = 00010011, en suppo-
sant qu’il y a eu au plus une erreur de transmission.

3. Parmi les mots t; =77770000, to =707070000 et t3 =70707070 qui ont
subi des effacements, les autres bits ayant été transmis correctement,
lesquels peut-on décoder ?

4. Le code C est-il MDS? Cyclique 7 Parfait ?

5. Montrer que, pour tout mode de code m de C, le mot m + 11111111
appartient a C. En déduire le nombre de mots de C de poids 4.

6. Montrer que C' est équivalent au code étendu du code de Hamming
Ham(8).

7. Montrer que C est son propre orthogonal.
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Exercice 23. On considére le code binaire ot on envoie 16 bits pour
9 bits significatifs de la maniére suivante :
- on envoie les trois premiers bits p;, ps, p3 suivis d’un bit de parité

(paire) by,
- on envoie les trois bits sq, so, s3 suivants suivis d’un bit de parité
(paire) bo,
- on envoie les trois derniers bits dy, do, d3 suivis d’un bit de parité
(paire) bs,

- on envoie un paquet de 4 bits de contréle c¢i, co, c3, ¢4 O ¢ =
p1+s1+dy, o =pa+ 52+ da, c3 =ps+ s3+dset cyg =0y + by + bs.
1. Montrer que ce code est linéaire, donnez sa matrice génératrice c’est
a dire la matrice dont les lignes sont formées des images des vecteurs
de base de F.

2. Coder le mot 100111000.

3. On suppose avoir re¢u le mot 0110101101100011. Retrouvez le mot
envoyé.

Exercice 24. Trouvez le code dual du code binaire de répétition de
longueur n.

Exercice 25. Trouez les matrices canoniques génératrice et de controle
1110110

du code binaire de matrice génératrice M = 1 0 1 1 1 0 1
1100101

Exercice 26. On dit que deux codes linéaires de méme longueur sont
équivalents si I'un s’obtient & partir de 'autre par une permutation
des coordonnées. Vérifier que deux codes équivalents ont méme type.
Montrer que tout code est équivalent a un code donné par un codage
systématique.

Exercice 27. On transmet des données par paquet de 16 bits, écrits

dans un tableau 4 x 4, en ajoutant une ligne et une colonne de controle

obtenue en associant a chaque ligne et chaque colonne son bit de parité.
a) Que pensez-vous des paquets re¢us suivants :

11011 1 1101 00101
00110 01111 10010
01010 ¢, 00101/, 00101
1 00 01 11001 11101
0011 0101 1 011

b) Quels sont la longueur, la dimension et la distance du code décrit ?
¢) Combien repére-t-il d’erreurs ? Combien en corrige-t-il 7
d) Si on ajoute en derniére position le bit de parité de la colonne
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de controle, que deviennent la longueur, la dimension, la distance, le
nombre d’erreurs repérées, corrigées du code ?

Exercice 28. i) Quel lien existe entre la dimension et la longueur d’un
code 1-correcteur MDS? i) Que peut-on dire des codes 1-correcteurs
MDS parfaits sur le corps fini F,?

Exercice 29. Soit C' le code de Hamming binaire de longueur 7.
1. Déterminer une matrice génératrice normalisée de C' a l'aide de la
méthode du pivot de Gauss. 2. En déduire une matrice de controle de

C.
3. Décoder quand c’est possible les mots 1111111, 1101011, 0110110 et
1111010.

Exercice 30. Soit C' le code binaire linéaire de matrice génératrice

1
G=|1
0

—
_ o O
—_ O =
o O =
O = O

1. Le code est-il systématique ?

2. Déterminer une matrice de controle et la capacité de correction de
C.

3. Le code est-il MDS?

4. Décoder si possible les mots 111110 et 111111.

Exercice 31. Soit un code de Hamming défini par la matrice de parité
4x6

1000 1 hyg
1100 0 hyg
H=1101 00 hye

001 1 1 0 hyg

(a) Sil'on choisit hig = hag = hsg = hsg = 1, déterminer la liste
des mots code. Quel est le nombre de bits d’information et de parité?
Combien d’erreurs ce code corrige-t-il 7

(b) Montrer que les variables hy g, ha g, h3 ¢, ha Peuvent étre choisies de
maniére a ce que le code corrige les erreurs simples, mais aussi détecte
(sans corriger) les erreurs doubles. Déterminer la liste des mots code, et
montrer que la distance minimale du code est égale & 4. (Indication : Si
la distance minimale de Hamming vaut = alors tout ensemble de x — 1
colonnes de H doit étre linéairement indépendant).

Exercice 32. Démontrer que la distance minimale d’'un code de Ham-
ming est égale a d si et seulement si tous les mots code non nuls ont
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au moins d bits égaux & 1, et au moins 'un d’entre eux a exactement
d bits égaux a 1.

Exercice 33. Générateur d’'un code de Hamming. On appelle géné-
rateur d’un code binaire (n; k) une matrice k x n dont les lignes sont k
mots code linéairement indépendants. Chacun des 2k mots code peut
alors s’exprimer comme une combinaison linéaire des lignes de G.

(a) Déterminer la matrice de parité du code dont le générateur est

110010
001101
Gi= 010111
010001

Quelles sont les propriétés de correction et/ou détection d’erreur de ce
code?
(b) Méme question pour le code de générateur

G;=(110010)

Exercice 34. Montrer qu’'un code de Hamming corrige jusqu’a t et
détecte (mais ne corrige pas nécessairement) jusqu’a t erreurs si et
seulement si tout ensemble de 2¢t — 1 colonnes de la matrice de parité
est constitué de colonnes linéairement indépendantes.

Exercice 35. a) Construire un code binaire de 4 mots de longueur 3
et de distance minimum 2.

b) Montrer qu’un code binaire de longueur 3 et de distance mini-
mum 2 posséde au plus 4 mots.

¢) Quelle est la distance maximale que peut avoir un code linéaire
binaire de 64 éléments de longueur 10 ?

Exercice 36. Soit C le code binaire comportant tous les mots de
longueur 11.

(1) Combien C' comporte-t-il de mots?

(2) Combien C' peut-il détecter et corriger d’erreurs ?

On suppose que la transmission se fait a la vitesse de 10°
bits par seconde, et que la probabilité qu’un bit soit modifié par
le bruit est 10~7.

(3) Calculer la probabilité qu'un mot soit modifié par le bruit.

(4) Combien de mots erronés peut-on s’attendre a recevoir en 24
heures sans pouvoir les détecter ?
Soit C’ le code binaire obtenu a partir de C' en ajoutant a
chaque mot un bit de parité.
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(5) Combien C” peut-il détecter et corriger d’erreurs ?

(6) Calculer la probabilité qu’au moins 2 erreurs affectent un méme
mot.

(7) Combien de mots erronés peut-on s’attendre a recevoir en 24
heures sans pouvoir les détecter ?

Exercice 37. Soit C' le code binaire linéaire de matrice génératrice

110110
G=|(110001
01 1100

1. Déterminer une matrice de controle et la capacité de correction de
C.

3. Le code est-il MDS?

4. Décoder si possible les mots 111110 et 111111.

Exercice 38. Soit C} un [n, ki,d;] code linéaire et Cy un [n, ko, ds]
code linéaire sur le corps fini F. On construit le code C = {(y,z +
y) |z e Cy, ye Cy}.

1) Si Gy et G5 sont des matrices génératrices de C et Cy respective-
ment, montrer que C' est un [2n, k1 + k2] code linéaire sur F de matrice

génératrice
(0 Gy
i (& 6)

ol 0 est la matrice nulle k; X n.

2) Montrer que d(C) = min(dy, 2ds).

3) On suppose d; > 2ds, montrer que tous les mots du code C' de poids
minimaux sont de la forme (y,y) o y est de poids minimal dans Cs.

Exercice 39. Formuler et montrer la version appropriée de I'exercice
précédant dans le cas de codes non linéaires

Exercice 40. Soit C' un [n, k, d]-code linéaire binaire auto-dual.

a) Montrer que le mot 1---1 est dans C.

b) Montrer que soit tous les mots de C' sont de poids divisibles par 4;
ou exactement la moiti¢ de mots de C' sont de poids divisibles par 4
tandis que 'autre moitié sont de poids pairs non divisibles par 4.

¢) Pour n = 6. Déterminer d.

Exercice 41.
Soit C' un [n, k,d] code linéaire sur le corps F,. On suppose que pour
tout 1 <7 < n il existe au moins un mot de C' dont la i“™¢ composante

est non nulle.
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i) Montrer que la somme des poids de tous les mots du code est
n(qg—1)¢"".

ii) Montrer que d < n(q — 1)qk_1/(qk —1).

iii) Peut-on construire un [15, 7, d| code binaire linéaire avec d > 87

Exercice 42.

Soit C' un code linéaire de distance minimale d, avec d est paire. Montrer
qu’une classe de C' contient deux vecteurs de poids ¢ + 1, o ¢ est la
capacité de correction.
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Chapitre 3

Les codes linéaires parfaits

Les codes linéaires parfaits sont certains codes triviaux, les codes
de Hamming et deux codes de Golay.

Les codes de Hamming ont été inventés par Richard Hamming aux
Bell Labs, a la fin des années 1940. A cette époque, quand les ordi-
nateurs rencontrérent une erreur, ils s’arrétaient. Les travaux de Ham-
ming ont porté sur la possibilité que les ordinateurs détectent, corrigent
des erreurs isolées et continuent & fonctionner. Sa solution a consisté
a grouper les informations en groupe de 4 bits et de calculer 3 bits de
contrdle. Ainsi le code de Hamming (7,4, 3) a été né.

Ce code a été utilisé dans les années 1979-1981 pour la transmission
d’images couleurs de Jupiter et de Saturne vers la Terre par la sonde
américaine Voyager 1 et 2. C’est une généralisation de la construction
des codes de Hamming par Marcel Golay, fin des années 1940.

Les codes de Hamming sont parfaits et de distance minimale 3. Y
en a-t-ils d’autres codes parfaits de distance minimale > 37 Il y en a
deux, qui ne sont pas de Hamming, ils ont été découvert par Golay.

Trois triplets vérifient I’égalité dans la borne de Hamming, sans
étre des codes de Hamming, sont (23,2'2,7), (90,27, 5) pour ¢ = 2
et (11,35 5) pour ¢ = 3. Le premier triplet défini le code linéaire bi-
naire [23,12,7], le troisiéme défini le code linéaire trinaire [11,6,5] qui
sont appelés code de Golay. On démontre qu’il n’existe pas de code
(90,278 5).

En 1973, Tietdvainen, a montré que tout code parfait non trivial

o
code binaire de Golay, soit un (11;3%; 5)-code trinaire de Golay.

Nous construisons ici le (24, 2'% 8)-code de Golay étendu par une
matice génératrice et nous déduisons le (23,2'27)-code de Golay en
réduisant la longueur du premier d’un seul bit. Il y a d’autres construc-
tions, voir |3, chap 4] pour les constructions de R. J. Turyn et J. H.
Conway.

Le minitel frangais (Figure 3 ) code ses données avec un code de
Hamming de paramétre (2" —r — 1,2" — 1) = (120, 128) ou r = 7, on
code 15 octet a I'aide d’'un octet supplémentaire.

sur 7 est soit un (qT—T, g, 3) -code de Hamming, soit un (23, 2'%7)-

35
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FIGURE 1. Minitel francais

3.1. Les codes de Hamming

Un code de Hamming permet de détecter et de corriger une erreur.

Comment construire des codes qui corrigent une erreur ?

Rappelons qu’un code C' est de distance minimale d si et seule-
ment si, il existe d colonnes de sa matrice de contréle linéairement
dépendantes, tandis que d — 1 colonnes quelconques sont linéairement
indépendantes.

On construit une matrice de controle H d’un code de Hamming de
facon est ce que deux colonnes quelconques ne soient pas linéairement
dépendantes : Si r est le nombre de lignes de H, ces colonnes appar-
tiennent & Iy, doivent alors étre non nulles, et on doit en choisir au
plus une par droite de F;. Le nombre maximum de colonnes est donc

(¢"—1)/(g—1).
3.1.1. Définition.

DEFINITION 3.1.1. Soit le corps fini Fy, v un entier positif > 1,
n=(¢q"—1)/(q—1) et M une matrice r x n dont les colonnes sont
des vecteurs non nuls de ¥ tel que aucun n'est multiple de Uautre. Le
[n,n — r]-code de matrice de controle M est appelé code de Hamming
et noté par Ham(r,q).

[’ordre dont sont écrits les colonnes est sans importance, car toutes
ces matrices générent des codes équivalents. Donc pour un r donné il
v a (2" — 1)! codes équivalents.
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Ham(r,q) est un code de longueur n = ¢" — 1 et de dimension
k=n—r=q —1—r,cestun [¢" —1,¢" — 1 —r]-code. Le paramétre
r =n — k représente la partie redondante du code.

EXEMPLE 3.1.2. Pour r = 2, Ham(2,2) est un [3,1]-code de ma-
trice de controle ( 1 (1) (1) e2t de matrice génératrice ( 111 )
Done Ham(2,2) = {000, 111}.

Pour r =3, Ham(3,2) est un [7,4]-code de matrice de controle

1 010
01 1001
0111

—_ = =

Le nombre minimal de vecteur linéairement dépendants est 3 d’ou la
distance minimale de Ham(3,2) est 3. La dimension du code est 4. Le
cardinal de ce code est 2* = 16.

EXERCISE 3.2. Montrer que les codes Ham(2,2) et Ham(3,2) sont
parfaits.

EXEMPLE 3.2.1. Pour r = 2 et ¢ = p un nombre premier, une

| ) 01 1 1 - 1
matrice de controle de Ham(2,p) est(l 019 ... p—l)'

THEOREME 3.2.2. Le code de Hamming Ham(r,q) est de distance
minimale 3 et il est parfait.

Preuve : Soit M une matrice de controle de Ham(r, q). Des colonnes
de M sont multiples de

177071
of1]]1
o]0l ]o
o] Lo] Lo

qui sont linéairement dépendants. Par le Théoréme 2.9.3 Ham(r, q)
est de distance minimale 3. Ce qui implique que c¢’est un code correcteur
d’une seule erreur.

Pour montrer que ce code est parfait on utilise la définition 1.9.1 .
On a |[Ham(r,q)| =¢" " oun=(¢"—1)/(¢—1). De plus t = 1. D’onl

t

MY, (:@) (4= 1" =¢""(+nlg=1) =¢"

m=0
Donc Ham(r, q) est parfait.
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PROPOSITION 3.2.3. Le code dual Ham(r,q)* est un code simpleze,
c’est-a-dire tous ses mots non nuls sont de méme poids. La valeur com-
mune de leur poids est ¢" L.

Preuve en exercice.

3.2.1. Décodage des codes de Hamming. La procédure de dé-
codage des codes de Hamming est simple. On n’a pas besoin de calcu-
ler la table des syndromes et les représentants de classes. Car pour les
[¢"—1,¢" —1—r,3]-codes de Hamming les représentants de classes sont
les ¢" vecteurs de poids au plus 1. Soit H, la matrice de controle dont
les colonnes sont les nombres 1,2,---,2" — 1 écrit en binaire et com-
pété de 0 au début (par exemple pour r = 3, 7 s’écrit (1,1,1), 3 s’écrit
(0,1,1), 2 s’écrit (0,1,0)). Puisque le syndrome du n-uplet de poids un
dont le seul 1 est dans la ie position esl r-tuplet représentant en bi-
naire le nombre i. L’algorithme de décodage par syndrome des codes
de Hamming est :

Soit y € Fy Pour trouver le mot x € Ham(r, q) le plus proche de y,
il suffit de :

- calculer S(y) = Hy'".

-si S(y) =0, alorsy =z € C.

- si S(y) # 0, on cherche l'indice i tel que S(y) = Ac;, ot les ¢; sont les
colonnes de H car tous les vecteurs non nuls de F; sont des colonnes
de H.

- Remplacer y; par y; — A, et retourner x = y.

Preuve : Notons e; le mot dont les coordonnées sont toutes nulles
sauf la i-éme qui vaut 1. Clairement, on a

Hyt = H()\el)t = H(y — )\Ti)t = Hyt — )\H@f =0

Donc x =y — Xe; € H(r,q) et est a distance 1 de y.
Cet algorithme est facilement adaptable aux codes de Hamming sur
un corps quelconque F,.

EXERCISE 3.3. Considérer le code de Hamming Ham(3,2) et déco-
der le mot recu y = 0000001

3.3.1. Codes de Hamming étendus. Un code étendu peut aug-
menter la capacité de correction ou de détection d’erreurs.

DEFINITION 3.3.1. Soit un code de Hamming Ham(r,2), on ajoute
a chaque mot du code Ham(r,2) un 0 ou un 1 de maniére a ce que le
poids de ce mot soit pair. On note Ham(r,2)* le code ainsi obtenu.

PROPOSITION 3.3.2. Le code Ham(r,2)* est un [2",2" — 1 —r]-code
linéaire de distance minimale 4.
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Preuve : Soient ¢}, c5 € Ham(r,2)* tel que ¢; et ¢y sont les mots du
code correspondant dans Ham(r). ¢; + ¢b et ¢; + ¢ ont les 2" — 1 pre-
miéres composantes identiques. Clairement Ham(r,2)* est un espace
vectoriel. Puisque Ham(r,2)* et Ham(r,2) ont méme nombre d’élé-
ments, donc méme dimension. D’ott Ham(r,2)* est un [2",2" — 1 —r]-
code linéaire.

3.4. Unicité des codes de Hamming

THEOREME 3.4.1. 1) Ils existent des codes surIF, parfaits corrigeant
une el une seule erreur qui sont non linéaires et tous ces codes ont
meéme parameétres que les codes de Hamming : de longueur n = qqr%ll,
nombres de mots q"~" et de distance minimale 3.

2) Tout code linéaire parfait sur F, corrigeant une et une seule
erreur est un code de Hamming.

3.5. Codes de Golay
3.5.1. Code de Golay étendu.

t
3.5.1.1. Définition. Soit M la matrice 12 x 12 : M = ( ]\;[1 6
oul = (1---1)et M estla matrice dont la premiére ligne est (11011100010)
et les autres sont les permutations circulaires de cette ligne. M est sy-

meétrique et s’écrit :

R R PP O, OOORFRFKFO
O R P ORFROOO -
R P OR PO, OO0
—R PR ORPFPRORFR,OOOR
R R R RO, RO, OOO
— O R FRPF PR OFRRFPRORFROO
— OO R PR EFEFORFRRFEORFRO

O R OO O RO
O OO RO
—_ O OO R MR R ORFR KO
—_—_ 0O OO R MFEKFEORF O
(e e i e e e e

DEFINITION 3.5.1. Le code de Golay étendu est défini par la matrice
génératrice G = ([dlng) et est noté Gay.
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3.5.1.2. Propriétés du code de Golay étendu. 1) Le code Goy est de
longueur 24, de dimension 12 et formé de 2'2 = 4096 mots.

2) Une matrice de controle de Gy, est la matrice 24 x 12 : ( M )t

Idi2

3) Une matrice génératrice de Goy est la matrice 12 x 24 : (M:1d;5)
4) Le code Gy est auto-dual

5) la distance minimale de Go4 est 8.

6) Le code Goy corrige jusqu’a 3 erreurs.

Preuve : Les propriétés 1, 2 et 3 sont videntes.

4) G = (Id9:M) et H = (M":1dy5) or M = M" car elle est symé-
trique. D’ot1 Goy est auto-dual.

5) Cette démonstration se fait en trois étapes :

i) Tout mot de Goy est de poids divisible par 4, en effet : les lignes
de G = (Idy2, M) sont toutes de poids 8 ou 12. Soit un mot ¢ € Goy.
Supposons que c¢ est somme de deux lignes r; + r;. Les lignes de M
sont orthogonales d’ou les lignes de G sont aussi orthogonales. D’ou ¢;
et ¢; ont un nombre paire de 1 en commun. Disons 2z. D’oul w(c) =
w(l;) +w(l;) — 2(2z) est un multiple de 4.

Supposons maintenant que c est somme de trois lignes ¢; 4 £; + ¢j,.
Si on note my; = ¢; + {; alors ¢;.0; = 0 car Gys est auto-dual. D’oil ¢
et {1 ont un nombre paire de 1 en commun. Disons 2y. D’ou w(c) =
w(er) + w(lk) — 2(2y) est un multiple de 4. Ainsi on montre que tout
mot de Gy, est de poids multiple de 4.

ii) Les 11 premiéres lignes de G sont des mots du code Goy de poids
8. Ainsi la distance minimale de Gy4 est soit 4 soit 8.

iii) Aucun mot de Gyy n’est de poids 4. Le code Goy est auto-dual.

(M":1d;5) est aussi une matrice génératrice de ce code. Si (a,b) € Goy
alors il en est de méme pour (b,a) ot a,b € F12. Supposons que (a, b)
est de poids 4 et w(a) < w(b).

Si w(a) = 0 alors a = 0 et donc b = 0 aussi, ce qui est impossible.
Si w(a) = 1 alors (a,b) est une ligne de Gay, ce qui est impossible. Si
w(a) = 2 alors (a,b) est une somme de 2 lignes de G. Mais en faisant la
somme de 2 lignes quelconques, on ne trouve aucune somme de poids
4.

THEOREME 3.5.2. Si C est un code binaire de longueur 24, |C| =
22 de distance minimale 8 et 0 € C, alors C est équivalent & Goy.

Preuve voir [3, Chap 4].
3.5.2. Code de Golay.

LEMME 3.5.3. Si un q — (n, M, d)-code eziste, alors il existe un
q— (n—1,M,d—1)-code.
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Preuve : Soient x et y deux mots du ¢ — (n, M, d)-code tels que
d(x,y) = d on choisit une composante de x et y ou ils différent et on
supprime cette composante de tous les mots de ce code. Le résultat est
un ¢ — (n — 1, M,d — 1)-code.

THEOREME 3.5.4. Soit d un nombre pair. Un (n, M, d)-code binaire
existe si seulement si (n — 1, M, d — 1)-code binaire existe .

Preuve : =) D’aprés le lemme.
<) Soit C'un (n—1, M, d—1)-code binaire. Pour 2 € C on note w(x) le
poids de x. Soit C” le code obtenu en ajoutant & x € C, w(z) mod 2.
Tous les mots de C’ ainsi obtenus sont de poids pair. Or d(z,y) =
w(z) + w(y) — 2w(x + y) doit étre pair pour tout z,y € C’ d’ou d(C”)
est pair et d — 1 < d(C”") < d mais d — 1 est impair, d’ou d(C") = d.
Donc C" est un (n, M, d)-code.

REMARQUE 3.5.5. Ayant construit le [24, 12, 8]-code de Golay étendu
Goa, on déduit d’apres le théoréme précédant le [23,12,7]-code de Golay
qui est parfait.

3.5.2.1. [11,6,5]-code de Golay trinaire. Matrice génératrice du [11,6, 5]-
code de Golay trinaire et parfait :

10000011111
01000001221
~loo0o100010T122
Gu=10001002101 2
00001022101
00000112210

EXERCISE 3.6. Montrer que le [11, 6]-code linéaire trinaire de Golay
engendré par les 11 premiéres colonnes de la matrice Gio ci-dessous est
de distance minimale 5.

100000011111
010000101221

G, — 001000110122
2=l ooo0o10012101 2
000010122101
000001112210

EXERCISE 3.7. Montrer que pour q = 2, le triplet (90,27 5) vérifie
[inégalité de Hammaing.

THEOREME 3.7.1. Il n’existe pas de code binaire de paramétres
(90,278 5).
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Preuve : Supposons qu’un tel code C' existe, parfait et de distance
minimale 5. On peut supposer que 0 € C'. Soit Y 'ensemble des z € FY°
commengant par deux 1 et de poids 3. On a |Y| = 88. Puisque C est
parfait pour tout y € Y il existe un unique = € C tel que d(z,y) = 2.
on a

2=d(C) —w(y) Swlz) —wy) Sw(@—y) <2

)

d’ott w(xz) = 5 puisque w(y) = 3 et d(z,y) = w(z —y) = 2. Ce qui
veut dire que = doit avoir un 1 14 ol ¥ en a. Soit X l’ensemble des
x € C commengant par deux 1 et w(x) = 5. On sait que pour tout
y € Y il existe un unique x € X tel que d(x,y) = 2. Dans {(x,y) €
X xY|d(z,y) = 2} il y a |[Y| = 88 éléments. Mais chaque z € X
contient exactement trois 1 aprés les deux premiéres positions. D’ou
pour chaque z € X il y a trois vecteurs y € Y tel que d(z,y) = 2. D’ou
3| X| = 88 ce qui est impossible car | X| est un entier.

3.7.1. Unicité des codes de Golay.

THEOREME 3.7.2 (Tietavainen et Van Lint, 1971.). Tout code par-
fait C' corrigeant jusqu’a t-erreurs, de longueur n sur IF, satisfait une
des condition swivantes :
1)|Cl=1,t=n;
2)|Cl=q",t=0;
3)|Cl=2,qg=2,n=2t+1;

A0 =3 q=3t=2n=11;
5)|C| =22, ¢g=2,t=3,n=23;
6)|IC|=q"", t=1,n= (¢ —1)/(¢—1), pour tout r > 1.

Dans ce théoréme on ne fait aucune hypothése de linéarité. Les
codes de 1) et 2) sont parfaits et triviaux. Le code 3) est un code
de répitition. 4) et 5) sont les codes de Golay. 6) sont les codes de
Hamming.

Best et Hong ont montré que ce théoréme est valable pour tout
alphabet fini, et non seulement pour F,, si ¢t > 3.

COROLLAIRE 3.7.3. 1) Tout code non-trivial, parfait, corrigeant
plusieurs erreurs a méme longueur, méme nombre de mots et méme
distance minimale que le [23, 12, 7]-code binaire ou le [11, 6, 5]-code
trinaire de Golay.

2)Tout code binaire (respectivement, trinaire) linéaire ou non ayant
212 (respectivement, 3% ) mots, contenant 0, de longueur 23 (respecti-
vely, 11) et de distance minimale 7 (respectivement, 5) est équivalent
au [23, 12, 7]-code binaire (respectivement, [11, 6, 5[-code trinaire) de
Golay.
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3.7.2. Décodage. On cherche a corriger des erreurs de poids < 3.
On note e = (e1,e2) o ¢; est de longueur 12. Puisque w(e) < 3 on
a soit w(er) < 1 ou w(es) < 1. Soit y = z+e et H' = (19) on a
s =yH'= (e1,e0) H' = €1 + ea M.

Si w(ez) < 1 alors s; est un mot de poids < 3 si w(ez) = 0 sinon
c’est une ligne de GG dont au plus 2 bits ont été changés.

De méme si w(ey) < 1, s = y(]\f) =e1M + es.

Dans tous les cas si w(e) < 3 on a s; = e + eaM = yH' et
S9 = €1G + €9 = (61 + BQG)G = SlG.
Algorithme :

1) calculer s = yH";

2) siw(e) <3, e=(s,0);

3) si w(s + b;) < 2 pour une ligne b; de M, alors e = (s + b;, €;) ;

4) calculer sM ;

5) si w(sM) < 3 alors = (0, sG) ;

6) si w(sG + b;) < 2 pour une ligne b; de G, alors e = (g;, sM + b;) on
. =(0,-+-,1,0,---,0);

7) si e est non déterminé, demander rediffusion.

Cet algorithme nécessite au plus 26 calculs de poids pour décoder.

Q)

EXEMPLE 3.7.4. Le code de Gloay (23,12,7) est cyclique de po-
lynome générateur gi(z) = 1+ 2% + 2* + 25 + 2° + 219 + 2M ou
go(x) =14+ 2+ 2° + 25+ 27 + 2° + 2. Les polynomes g1(z) et go(z)
sont des facteurs de x** + 1 en fait : x> +1 = (1 + 2)g1(x)ga(x).

Le code de Gloay (11,6,5) est cyclique de polynéme générateur
gx) =2 +a* — a3+ 2?2 —letsih(x) =25 —a% —2* — a3+ 22 + 1
alors 1! — 1 = g(x)h(z)

20121100000
02012110000
- 00201211000
00020121100
00002012110
0000O02¢O012171

3.8. Exercices

Exercice 1. Montrer 'Inégalité de Singleton suivante :
Aq(n, d) S qn—d—H

Exercice 2. Soit C' un code linéaire binaire. Montrer que tous les
mots de C' sont de poids paire ou exactement la moitié d’entre eux
sont de poids paire.
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Exercice 3. On transmet des données par paquet de 16 bits, écrits

dans un tableau 4 x 4, en ajoutant une ligne et une colonne de controle

obtenue en associant a chaque ligne et chaque colonne son bit de parité.
a) Que pensez-vous des paquets recus suivants :

11011 11101 00101
00110 01111 1 0010
01010 /{, 00101, 001 01
1 00 01 11001 11101
0 011 0101 1 011

b) Quelles sont la longueur, la dimension et la distance du code décrit ?
¢) Combien repére-t-il d’erreurs 7 Combien en corrige-t-il ?

d) Si on ajoute en derniére position le bit de parité de la colonne
de controle, que deviennent la longueur, la dimension, la distance, le
nombre d’erreurs repérées, corrigées du code ?

Exercice 4. 1) Ecrivez une matrice de controle et une matrice géné-
ratrice canaonique du code

- binaire de Hamming Ham(4, 2).

- trinaire de Hamming Ham(2,3). Décoder y = 11000

- trinaire de Hamming Ham(3, 3).

Exercice 5. Ecrivez la table de syndrome du code binaire de Ham-
ming Ham(3,2). Décodez les mots suivants : 1001011, 1100110, 1111001.

Exercice 6. On appelle code MDS un code de paramétres (k,n,d)
avec d = n + 1 — k. Montrer que le code de Hamming de longueur 7
n’est pas MDS.

Exercice 7. Construire la matrice de controle de Ham(4,2) dont les
colonnes sont les nombres binaires 1, 2, ..., 15 dans cet ordre. Dé-
coder les mots suivants et vérifier que les mots obtenus sont bien
des mots du code Ham(4,2). 001000001100100, 101001110101100 et
000100100011000.

Exercice 8. Montrer que pour tout entier r > 2, on a Ay(2"—1,3) =
22"—1—7'.

Exercice 9. Montrer que les triplets (23;2'2%;7), (90;2®;5) pour ¢ =
2, et (11;3%;5) pour ¢ = 3 satisfont 1’égalité dans la borne de Hamming.

Exercice 10. Montrer qu’il n’existe pas de code binaire de paramétres
(90,278 5),
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Exercice 11. Montrer que le [11,6]-code triaire engendré par les 11
premiéres colonnes de la matrice Gpo ci-dessous est de distance mini-
male 5.

100000011111
010000101221
o 001000110122
2”1l oo0o0100121012
000010122101
000001112210

Exercice 12. Montrer qu’un [n, M, 7]-code binaire parfait vérifie n =
7oun=23.

Exercice 13. Montrer que la distance minimale d’un code parfait est
impaire.

Exercice 14. Montrer que le code binaire de répétition de longueur
n impaire est parfait. Combien d’erreurs corrige-t-il 7

Exercice 15. Le code de Hamming étendu de longueur 8 a pour ma-
trice de parité

10000111
010010171
i = 001 011QO0T1
00011110

C’est un code de paramétres [8, 4, 4].

1. Combien d’effacements corrige-t-il correctement ?

2. Corrigez les effacements suivants :
00772011,2011007 2,7 2100701,21 207001, 1111?2721, 1?1?1211

Exercice 16. Montrer que le code dual Ham(r,q)* d’un code de
Hamming Ham(r,q) est un code simplexe, et la valeur commune des
poids (non nulle) est ¢" 1.

Exercice 17. Montrer que le code de Hamming Ham(r,2) est équi-
valent a un code cyclique.

Exercice 18. Soit C le |7, 4]-code de Hamming de polynome généra-
teur g(x) = 1+ z + x3. Décoder le mot regu 0101111.

Exercice 19.
Soit C' le [7, 4]-code binaire de Hamming. Décoder le mot re¢u 0101110
si possible.
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Exercice 20.

Montrer que le code dual Ham(r, q)* est un code simplexe, c’est-a-dire
tous ses mots non nuls sont de méme poids, et la valeur commune de
leur poids est ¢"~!.
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Chapitre 4

Codes de Reed-Muller

Les codes de Reed-Muller ont été introduits séparément par 1.S.
Reed et D.E. Muller en 1954. Ils forment une classe de codes généra-
lisant les codes de Hamming et ils sont définis récursivement. Ils sont
utiles pour la transmission sur des canaux trés bruités. De plus ils sont
faciles a implémenter et & décoder. En particulier, RM(1,m) a une
distance minimale égale a la moitié de sa longueur. RM(1,5) a été
utilisé entre 1969 et 1973 par le satellite Mariner 9 et Viking du NASA
pour la transmission d’images en noir et blanc de Mars vers la Terre.
Ce code a 25 = 64 mots de longueur 2° = 32, de distance minimale
24 = 16 et peut corriger jusqu’a 7 erreurs dans chaque mot transmi.
Chaque mot du code correspond & un niveau de gris, soit 64 niveaux.

4.1. Définition récursive

DEFINITION 4.1.1. Le code de Reed-Muler d’ordre r noté RM(r,m)
et de longueur 2™ ot 0 < r <m est :
RM(0,m) ={00---0,11---1} chaque mot est de longueur2™. RM(m,m) =
{0,1}°" = FZ".
et pour0 <r <m:RM(r,m)={(z,z+y)|z € RM(r,m—1),y€c RM(r—1,m—1)}

EXEMPLE 4.1.2. RM(0,0) = {0,1}.
RM(0,1) = {00, 11}.
RM(1,1) = {0,1}* = {00,01,10, 11}.
RM(0,2) = {0000, 1111}.
RM(2,2) = {0,1}".
RM(1,2) = {(z,z +y) |z € {00,01,10,11}, y € {00, 11}}
= {0000, 0101, 1001, 1010, 0110, 0011, 1100, 1111}

EXERCISE 4.2. Donnez les mots du code RM(1,3).

4.3. Matrice génératrice

PROPOSITION 4.3.1. G(r,m) est une matrice génératrice de RM (r,m)
ot on pose

47
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G(0,m)=(11---1), G(m,m) = (g(’gfgl’m)) et pour 0 <r <m on a

girm = (97570 o0y )

EXEMPLE 4.3.2. G(0,1) = (11), G(0,2) = (11---1), G(1,1) =

(01)

1 1)1 1
9(12)—(g(1’1) g(1,1))_ 0 1|0 1
0  G(0,1) T
1111
(6,2 o101
9(2’2)_(0---01 “loo 11
000 1
1111|1111
(61,2 61,20y [0 10 1]0101
g(1,3)_( G0,2) )1 001 1/0011
00001 111
111 1)1 111
0101/0101
001 1(001 1
g(z,s)—(g(%’2) gg;g): 000 1/0001
’ 00001 111
000O0[0 101
000O0[0O0T11

4.4. Propriétés

THEOREME 4.4.1. Le code de Reed-Muler RM(r,m) a les proprié-
tés suwwantes :

1) il est de longueur 2™ ;

2) RM(r —1,m) C RM(r,m) pour r >0;

3) de dimension k =_;_, (") ;

4) de distance minimale 2™~ ;

5) son code dual est RM(m —r —1,m) pour r < m.

6) RM(m —2,m) est le [n,n —m — 1]-code de Hammimyg étendu.

Preuve :
1) Par définition des codes de Reed-Muller.
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2) Pour m = 1 on a RM(0,1) = {00,11} € RM(1,1) = {0,1}2.
On démontre par récurrence sur m.
Supposons que pour 0 < r < m on a RM(r —1,m — 1) C
RM(r,m —1).
RM(r—1,m)={(z,z+y) |z e RM(r—1,m—1), y € RM(r—2,m—1)}
C{(z,z+y) |z e RM(rom—1), y e RM(r—1,m—1)}
= RM(r,m).
3) Par définition de G(r,m), on a
dimRM(r,m) = dimRM(r,m — 1) + dimRM(r — 1,m — 1)

(Y

1=0

m—1 . m—1 m—1
-(" )2 (") (05)

Or (") = (1), (7) = ("7) + (7)) et que ("57) = () = 1, d'on
dim RM(r,m) =>"7_, (7).

4) On montre par récurrence sur m. Pour m =1 on a RM(0,1) =
{00,11} de distance minimale 2 = 2'7° et RM(1,1) = {00,01, 10,11}
de distance minimale 1 = 2=, On suppose que la distance minimale
de RM(r,m —1) =2""1"" pour 0 < r <m — 1 On sait que

RM(r,m) ={(z,z+y) |z € RM(r,m—1), y € RM(r—1,m—1)}

et RM(r—1,m—1) C RM(r,m—1) d’aprés 2) cad z+y € RM(r,m—
1) et par hypothése de récurrence on a pour x # y, w(r +y) > 2™ 17,
De plus w(z) > 2™ 17" Don w(x, v+y) = w(z+y)+w(z) > 2.2 17" =
2m=" Six =y, alors (z,z +y) = (y,0) mais y € RM(r —1,m — 1).
Donc w(y,0) = w(y) > 2m- 1= = gm-r,

5) Rappelons que

RM(r,m) ={(z,z+y) |z € RM(r,m—1), y € RM(r—1,m—1)}

RM(m—r—1,m) =

{(@ 2 +y) |2 e RMm—r—1,m—-1),y e RM(m—r—2,m—1)}

Par récurrence sur m. RM(0,2) = {0000, 1111} et RM(1,2) =
{0000, 0101, 1010, 1111,0011,0110, 1001, 1100} sont orthogonaux puisque
tous les vecteurs sont de poids paire.

Le dual de RM(r,m — 1) est RM(m —r —2,m — 1) et le dual de
RM(r—1,m—1)est RM(m—r—1,m—1)douz.y =0et 2’y =0.
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Or d’aprés 2) RM(r—1,m—1) C RM(r,m —1) d’ou y.3y = 0. Donc

(z,2+y).(2", 2" +y) =22’ + (2 +y).(2" +¥)
=2z.2 +axy +yr' +yy

ce qui veut dire que tout vecteur de RM(r,m) est orthogonal a tout
vecteur de RM(m —r — 1,m) De plus on a

7“ m—r—1
dimRM(r,m) + dimRM(m —r —1,m) = Z (T) + Z (T)
1=0 i=0

DN GED S EBED o ()

dimRM(r,m) + dimRM(m —r —1,m) = 2™.

Donc RM(m —r — 1,m) est le dual de RM (r, m).

4.5. Décodage de RM(1,m)

On présente un algorithme de décodage rapide des codes RM (1, m).
La définition récursive de ce code suggére un décodage récursive aussi.
On commence par définir le produit de Kronecher de deux matrices

A = (a;j) et B par A x B = (a;;B). Par exemple : si H = ( o )

1 -1
et[2—<(1) ?)alors

1 11]0 0 1 0[1 0

1 =110 0 010 1
L=\ 1 [ L= 7519

0 0]1 —1 010 -1
DEFINITION 4.5.1. Soit H = ( 1 _11 ) On défini Hi, = Ipm-s X

H x IQi—l.

EXERCISE 4.6. Calculer Hy, H? et Hj.
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Algorithme de décodage. Soit G(1,m) une matrice génératrice de
RM(1,m). Soit y un mot regu et = le mot du code le plus proche de
Y.

1) soit g le mot obtenu en remplacant les 0 par des -1 dans y,

2) on calcule y; = §H} et y; = y; 1H' pouri=23,--- m,

3) trouver la position j de la plus grande composante en valeur absolue
de yy,. (la premiére position est 0).

Soit B(j) € Fy* la représentation binaire de j (les unités d’ordre
petit d’abord). Si la composante j de y,, est positive alors z = (1, B(j)),
si elle est négative alors = = (0, B(j)).

EXERCISE 4.7. Pour m = 3 ety = 10101011 montrer que x = 1100.

4.8. Fonctions booléennes
4.8.1. Définition.

DEFINITION 4.8.1. Une fonction booléenne & m wvariables est une
fonction [ : FJ — Fs.

Notons par x; I'application qui & y € FJ' associe sa i-eme compo-
sante y;. Les expressions z; + x;, x;x;, et de fagon plus générale, toute
expression polynomiale en les x;, définissent une fonction booléenne.
Remarquons que =7 = z; dans Fy, donc il est inutile d’introduire des ex-

posants plus grands que 1. Pour I C {1,--- ,m}, notons x; = [[,; z;.
PROPOSITION 4.8.2. L’espace F,, des fonctions booléennes a m va-
riables est un Fao- espace vectoriel de dimension n = 2™. Toute fonction

booléenne f € F,, a une écriture unique sous la forme

f= E arxry = E @iy i Tiy "+ - T,

Ic{l,-,m} 1< <ig < <is<m
Le plus grand I pour lequel a; # 0 s’appelle le degré de f.
1 sirz=y ..
=00 si x4y définit
sur F3'. Les 6, ou y € F3y' forment une base de F,, qui est donc de
dimension 2™. D’autre part, on peut exprimer les fonctions d, algébri-
quement en fonction des z; :

m

oy = [ [(ai+ i+ 1)

=1

Preuve : Soit la fonction booléenne §,(x)

Donc les monomes x;, - - - x;, engendrent bien ’espace F comme il y en
a exactement y (”;) = 2™ ils forment une base de F,,.

Pour n = 2™, on considére la bijection de {0,--- ,n — 1} dans
Foro: bk — 2™ k) + 2 2ky + -+« + 2k,, 1 + k,, (Décriture binaire
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de i). qu'on identifie avec u = (kq, ko, , km_1, km). Posons Fom =
{ag, a1, ,agm_1}. Tout élément u = (uy, -+ ,ugm_1) € F5" est iden-
tifié & un élément «; de Fom (dans un ordre quelconque mais fixe, par
exemple «; s’identifie & ’écriture binaire de i) qu’on identifie encore
avec la fonction booléenne f en m variables défini par u = (f(ap), -, f(aam_1)).

4.8.2. Codes de Reed-Muller.

DEFINITION 4.8.3. Le code de Reed-Muller RM(r,m) est le code
binaire engendré par les éléments de FY' associés aux fonctions boo-
léennes : xy telles que |I| <.

Autrement dit :

RM(r,m) ={(f(ao), -, flazn)) : f € F et deg(f) <7}
Le code RM(1,3) est engendré par les lignes ci-dessous :

F3 : 000 100 010 110 001 101 011 111
1 1 1 1 1 1 1 1 1
T 0 1 0 1 0 1 0 1
T 0 0 1 1 0 0 1 1
T3 0 0 0 0 1 1 1 1

Le code RM(2,3) est engendré par les lignes ci-dessous :

F3 : 000 100 010 110 001 101 011 111
1 1 1 1 1 1 1 1 1

T 0 1 0 1 0 1 0 1
T 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1
T122 0 0 0 1 0 0 0 1
X123 0 0 0 0 0 1 0 1
T3 0 0 0 0 0 0 1 1

4.9. Exercices
chercher exercices

Exercice 1. Montrer que pour r < m le code de Reed-Muler RM (r, m)
a pour code dual RM(m —r —1,m).
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Chapitre 5

Codes cycliques

Les codes cycliques forment une classe de codes linéaires trés impor-
tante, dont le codage et le décodage sont faciles & implémenter & 1'aide
des registres a décalage a rétroaction linéaire. Leur étude a commencé
en 1957. Plusieurs des codes vus précédemment, codes de Hamming,
codes Golay, codes de Reed-Muller sont des codes cycliques ou des
codes cycliques étendus.

5.1. Définition

Soit [F un corps fini et n € N* Par ¢ on note 'application linéaire
de ™ — ™ définie par

U(x1>x27 T 7~Tn) = ($n,$1,l'2, e ,.1'71,1).

DEFINITION 5.1.1. Un code linéaire C C F™ est appelé code cyclique
si o(x) € C pour tout x € C.

EXEMPLE 5.1.2. C' = {000, 110,011,101} est un code binaire cy-
clique.

THEOREME 5.1.3. Soit G une matrice génératrice d’un code linéaire
C. Alors C est un code cyclique si et seulement si o(L;) € C pour
chaque ligne L; de G.

DEMONSTRATION 1. Si C' est cyclique alors o(x) € C pour tout
x € C en particulier o(L;) € C pour chaque ligne L; de G. Inversement,
supposons que o(L;) € C' pour chaque ligne L; de G. Soit v € C', x =
S oL oi les o € F dow o(z) = o(XF ouLy) = S avo(Ly) €
C. Donc C est cyclique.

On considére p(x) un polynome de 'anneau Flz], (p(z)) I'idéal en-
gendré par p(z) et 'anneau quotient

Flz]/p(z) = {ao +agt+ -+ a,  t" | ag, a1, ,ap_1 € F}

ol t est la classe  + (p(z)) , i.e. p(t) = 0.

Pour p(z) = 2™ —1. On note F,, = F[z]/(z™ —1) ¢’est un anneau, ou
le produit est obtenu en posant 2™ = 1, 2! = x etc, dans le produit
usuel de polyndémes. L’addition est I'addition des polyndémes usuelle
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notée +. F,, est aussi un F-espace vectoriel, il est isomorphe a I’espace
vectoriel F, en identifiant tout polynéme ag + a1z + - - - + a,_ 12" ! de
F. avec le vecteur (ag, ay, - ,a,_1) de F™.

Soit C' C F™ un code linéaire. Un élément de C' peut étre vu comme
mot apay - - - a,_1 ou comme polynéme p(z) = ap+a1x+- - +a, 12" L.

1
r.p(r) = ap_1 + aox + -+ @y 2™ = ay_100a1 -+ Qo

ce qui veur dire qu'un code C' linéaire est cyclique si et seulement si
xp(z) € C pour tout p(x) € C.

THEOREME 5.1.4. Une partie C C F,, est un code cyclique si et
seulement st C' est un idéal de 'anneau F,,.

DEMONSTRATION 2. Soit C' un code cyclique et p(x) , q(x) dans C.
Alors p(z) —q(z) € C, Ap(x) € C et zp(x) € C. Dot x*p(z) € C ete.
Donc pour tout r(z) = ro+rx+--+r,_ 12" € F, onar(x).plr) =
rop(z) + rap(x) + -+ rp1x" p(x) € C c’est a dire C' est un idéal
dans F,,.

Inversement : Supposons que C' soit un idéal et p(z), q(x) dans C et
X € F alors p(z) —q(z) € C et A\p(z) € C done C' est un code linéaire.
De plus r(z)p(x) € C pour tout r(x) € C en particulier zp(x) € C.
Donc C' est cyclique.

5.2. Polynomes générateur et de controle

THEOREME 5.2.1. Soit C un idéal non nul de F,, alors :

i) il existe un unique polynome unitaire g(x) dans C de degré mi-
nimal ;

i) g(x) divise x™ — 1 dans Flz];

iii) pour tout p(x) € C, g(x) divise p(x) dans Fx];

w) Inversement supposons C = (p(z)) ou p(x) € F,. Alors p(x)
est de degré minimal dans C' si et seulement si p(x) divise 2™ — 1 dans

Preuve : i) Supposons que f(x) et g(z) sont deux polynémes dis-
tincts, unitaires et de degré minimal k . On pose h(x) = f(z) — g(z) €
C. Il est de degré < k. Si A est le coefficient du plus haut monoéme alors
A7'h(z) est unitaire de degré < k. Contradiction.

ii) En faisant la division euclidienne : 2™ — 1 = ¢(x)g(z) + r(x) on
q(x), r(x) € Flz] et deg(r(x)) < deg(g(z)) ou r(z) = 0. En passant aux
classes on a dans F,, : r(z) = —q(x)g(z) € C. Mais puisque g(z) est de
degré minimal on a r(z) = 0 et donc g(x) divise " — 1 dans F[z].

iii) Soit p(z) € C. On a p(x) = q(z)g(x) +r(x) on q(x), r(z) € Fx]
et deg(r(x)) < deg(g(x)) ou r(z) = 0. Puisque deg(p(z)) < n alors en
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passant & F,, on a r(x) = p(x) — q(z)g(xz) € C, or g(x) est de degré
minimal d’ou r(x) = 0 et donc g(z) divise p(x) dans F|x].

iv) =) par ii) et <) évident.

EXEMPLE 5.2.2. On cherche les idéaur non triviauzr de Fs[x] et
on déduit tous les codes cycliques de longueur 3. On a x°> — 1 = (z —
1)(z%+z+1) ces facteurs sont irréductibles sur Fy. D'ou Cy = (x—1) =
{0, 14z, x+2% 1+2*} et Co= (22 +2+1)={0, 1 + =+ 2°} ou
Cy ={000,110,011,101}et Cy = {000, 111}.

DEFINITION 5.2.3. Soit un idéal non nul C C F, et g(x) lunique
polynome minimal unitaire de C. Alors g(x) est appelé polynome géné-
rateur du code cyclique C.

REMARQUE 5.2.4. Soit C = (p(x)). Alors p(x) est le polynome
générateur de C' si et seulement si p(x) est unitaire et divise ™ — 1.

Le polyndéme générateur d’un code cyclique détermine, une matrice
génératrice et une matrice de controle.

THEOREME 5.2.5. Soit C C F,, un code cyclique de polynéme géné-
rateur g(x) = go+g1x+- -+ gr_12" 4+ g.2". Alors C est de dimension
n —r. De plus la matrice (n — 1) X n

g(x) g g1 G -+ g 0 0
rg(x) 0 g g1 - 9r—1 G- 0
G: . = . . .
" g (x) 0 0 0 g0 ¢

est une matrice génératrice de C'.

Preuve : Par le Théoréme 5.2.1, il existe h(z) tel que g(z)h(x) =
2™ — 1. D’ot go # 0. Les lignes de G sont linéairement indépendantes.
En les écrivant comme polynomes les lignes de G sont : g(z), zg(z), - - -,
¥ 1g(x). Soit p(z) € C, d’apreés le Théoréme 5.2.1 p(x) = q(z)g(x) ot
q(x) est un polynomes tel que deg(g(x)) < n—r puisque deg(p(z)) < n.
D’ou q(z) est de la forme ¢(z) = qo + v + - + qur12™ "' et
p(x) = qog(z)+qrg(x)+- - +qur_12" " Lg(x) et p(x) est combinaison
linéaire des lignes de G. Donc GG est une matrice génératrice de C.

On sait que si G est une matrice génératrice d'un code C' alors un
mot x € F* est codé comme 2G € C.

Si C est un code cyclique de polynéme générateur g(z) alors r =
deg(g(z)) = n — k et les lignes de G sont g(z), zg(z), -, 2* 1g(x).
Soit u = uguy - - Up_1, w(x) = ug + T + -+ + up_ 12 Alors

g(x) = u()g(x)
Donc un message polynomial u(x) est codé comme u(x)g(z).
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DEFINITION 5.2.6. Soit g(x) le polynome générateur d’un code cy-
cligue C C F,. Le polynome h(x) tel que 2™ — 1 = g(x)h(x) est appelé
polynome de controle de C.

Si C' est un [n, k]-code cyclique, alors son polynéme générateur g(z)
est de degré n — k et son polynome de controle est de degré k.

THEOREME 5.2.7. Soit C' C F,, un code cyclique de polynéme
de controle h(z) et p(x) € F,. Alors p(x) € C si et seulement si

p(z)h(z) = 0.

Preuve : Soit g(z) le polyndome générateur de C' alors g(x)h(x) =
z" — 1 d’ou g(z)h(xz) = 0 dans F,. Soit p(z) € C, par le Théoréme
5.2.1 on a p(x) = q(x)g(x) et p(x)h(x) = q(x )g(m)h(x) = 0 dans F,.

Inversement si p(z) € F, tel que p(z)h(x) = 0, alors p(z)h(x) =
f(@)(a" = 1). D'on p(x)h(x) = f(x)g(x)h(x). Donc p(x) = f(z)g(x)
d’ou p(z) € C.

THEOREME 5.2.8. Soit C' un [n, k|-code de polynéme de controle
h(z) = ho+ hax+---+ h_12* Y + hpx®. Alors
1) la matrice (n — k) x n

hi hp_1 hip_o --- hgp 0 0 --- 0
o 0 hk hk;'—l e hy ho O - 0
0 0 e 0 hn hy o hyg

est une matrice de controle du code C'.
2) Le code dual est cyclique et de polynome générateur

h(z) = hg + hg1@ + -+ - + hox® = 2Fh(1/2).

Preuve : Les lignes de H sont linéairement indépendantes. On montre
que chaque ligne est orthogonale a C, donc dans C*. Soit p(z) =
ap + a1 + -+ a,_ 12"t € C. On a p(x)h(x) = 0 dou a;_phy +
a;_pi1hg1+---+ahog=0pouri=kk+1,--- ,n—1. Dou

Qo 0
aq 0

H| . |=
Ap—1 0

d’ou les lignes de H sont n — k vecteurs linéairement indépendants
dans Iespace dual C+. Donc H est une matrice génératrice de C* et
par conséquent une matrice de controle de C.
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EXEMPLE 5.2.9. Ecrivez les matrices génératrice et de controle du
code cyclique de Hamming Ham(3,2). Ecrivez le code complet.

On a montré que g(x) = 2 + x + 1 est le polynéme générateur de
Ham(3,2) par l'exemple 5.2.12

11T 01000
c_|o1 10100
10011010
00011Q01
le polynome de controle est h(x) = (2" —1)/(2*+x+1) = 2* + 22 +2+1

par le Théoreme .

H =

o o
o~ o
[ e Rt
O = o
=
— = O
_ o o

est une matrice de controle de C.

THEOREME 5.2.10. Le code binaire de Hamming Ham(r,2) est équi-
valent a un code cyclique.

Preuve : Soit p(z) un polynéme irréductible dans Fy[x]. On sait que
Fo[x]/(p()) est un corps dont les éléments s’écrivent {0, %, at, a?, -+ a* 72}
ol « est un élément primitif. On associe chaque élément ag + a1z +
agz? + -+ a,_12" 1 € Fylx]/(p(x)) avec le vecteur colonne

Qo

ai

Qr—1

Soit n = 2" — 1. La matrice r x n
_ 2 n—1
H=[l,a,a% - ,a""]

est une matrice de contréle de C' = Ham(r,2) puisque ses colonnes
sont les éléments non nuls de Fy-. On a

C ={c(x) € F,: c(a) =0}

et C' est cyclique.
Exercice : Quel est le polynome générateur de Ham(r,2)?

COROLLAIRE 5.2.11. Tout polynéme primatif dans For est un poly-
nome générateur du code cyclique de Hamming Ham(r,2).

Soit v un élément primitif de For et p(z) son polyndéme minimal.
Alors Ham(r,2) = (p(x)).
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EXEMPLE 5.2.12. Trouvez le polynéme générateur du code cyclique
Ham(3,2).

Le polynome p(x) = x®+x+1 sur Fy est irréductible. Le sous-groupe
multiplicatif du corps F3 est d’ordre 7, dont tout élément non nul est
primitif. D’apres le théoréme (z3 + x + 1) = Ham(3,2).

EXERCISE 5.3. Ecrivez les matrices génératrice et de contréle ca-
noniques du code cyclique de Hamming Ham(3,2).

THEOREME 5.3.1. Soit C' un [n, k|-code sur un corps F de polynome
générateur g(x) et A une matrice k X (n — k) dont la i ligne est le
reste de la division de x" **=1 par g(x), i = 1,--- k. Les matrices

génératrice et de controle canoniques de C' sont G = (Iy: — A) et H =
(A':1, ) respectivement.

Preuve : Par resy)(f(2)) on note le reste de la division euclidienne
du polynéme f(z) par g(z).

On sait que deg(g(z)) = n — k. D’ou resy)(2?) = xJ pour j <
n — k. Puisque g(z) divise 2" — 1 on a resyu)(a") = resyu)(2?)
pour tout j > 0. Il suffit alors de calculer resg,)(2?) seulement pour
j=n—Fk,-- ,n—1

On pose G;(z) = o't —zFres ) (z pouri=1,---, k. Ona
deg(Gi(z)) < nd’on Gi(z) € F,,. De plus 2" F+ =t —res (2" FH71) €
C d'ou Gi(x) = a*(a" =1 — resyy (2" 1)) e C.

Soit G la matrice k x n dont la i ligne est G;(z) (écrite comme
vecteur) ¢ = 1,--- , k, alors

1 n—k+i—1 )

G = (I, — A)

oil A est une matrice kx (n—k) dont la i ligne est res () ("), Les
lignes de G sont des éléments de C' et sont linéairement indépendantes.
Donc G est la matrice canonique de C'. D’ou la matrice de controle

canonique de C est H = (A1, _y).
5.4. Décodage

Le théoréme suivant montre qu’on n’a pas besoin d’avoir une ma-
trice de controle d’un code linéaire cyclique pour calculer le syndrome.

THEOREME 5.4.1. Soit C un [n, k|-code cyclique sur un corps F de
polynome générateur g(z). Alors pour tout a € F", le syndrome S(a)
est égale au reste de la division de 2" *a(x) par g(x).

Preuve : On sait par le Théoréme 5.3.1 que H' = (]‘Lik) ou A

est une matrice k x (n — k) dont la i®" ligne est res, g (z" 1)
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,i=1,--- k. La i ligne de I, est 277, j = 1,--- ,n — k. En
utilisant la relation resy)(z"™7) = resy ) (z?) on déduit que la ™
ligne de H' est resy(z" * 1), i=1,--- n.

Soit a = apay -+ a,_1 et a(r) = ap+ a1x + -+ ap_12" € F,

S(a) = (agay - -~ an_1)H"

n
_ n—k+i—1
= g Ai—1TeSg(z) (@ )
i=1

n
o n—k+i—1
= resg(m) ( E ;1T )
i=1

= T€Sy(z) (ac"’ka(x))

REMARQUE 5.4.2. S§i C' est un code cyclique de polynome généra-
teur g(x), deux polynomes a(z) et b(x) sont dans la méme classe si
et seulement si g(z) divise a(x) — b(z) ce qui veut dire resgyy(a(x)) =
resqyq) (b(x)), donc on peut aussi définir le syndrome de a(x) par S(a) =

resgyz)(a(z))

EXERCISE 5.5. Soit C' un code cyclique de polyndme générateur g(x)
et H la malrice dont les lignes sont resgy (2971 pour j = 1,--- ,n.
Montrer que H est une matrice de controle de C.

REMARQUE 5.5.1. Dans le cas des codes cycliques, le polynome gé-
nérateur joue un role principale, contrairement aux matrice de généra-
trice et de controle.

LEMME 5.5.2. Soit C' C F}' un code linéaire de distance minimale
d. Montrer qu’un mot xinFJ est l'unique représentant de la classe x+C'
siw(z) < (d—1)/2.

COROLLAIRE 5.5.3. Soit C' un code cyclique de polynéme généra-
teur g(z). Soit y un mot recu de syndrome S(y). Si deg(S(y)) =<
[(d(C) —1)/2] alors y(x) est décodé comme y(x) — S(x).

On a y et S(y) sont dans la méme classe de plus S(y) est un repré-
sentant puisque w(x) < (d —1)/2.

LEMME 5.5.4. Soit C un [n, k]-code cyclique de polynome générateur

g(x) et s(x) = 10 st le syndrome de c(x). Le syndrome de

(9) S(ze(z)) = 2S(x) — Sp_k-19(x)
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Preuve : On divise ¢(x) par g(z) on obtient ¢(z) = q(x)g(z) + S(z)
d’ou

(10)  xc(x) = wq(x)g(x) + #5(x)
(11) = (2q(x) + snk-1)9(x) + (25(x) — snk-19(x)).

Puisque deg(zs(x) — sp—k-19(x)) < n —k = deg(g(x)). on déduit le
résultat.

EXEMPLE 5.5.5. Soit le [7,4]-code de polynéme générateur g(x) =
1+ 2% + 23. Le mot w = 0110110, s’écrit w(z) = x + 22 + 2* + 2° =
x + 22g(x). Donc S(w(z)) = z s’écrit 010. Les syndromes de zw(z) el
r?w(z) sont zx = 2? et xa® — g(x) = 1 + 22, respectivement.

Soit z un n-tuple. Un cycle de 0 de longueur ¢ est une succession de
¢ zéro consécutifs. Par exemple (0,0,3,2,0,0,0,1,0,0) a un cycle de 0
de longueur 4.

Algorithme de décodage. Soit C' un [n,k,d]-code cyclique de
polynome générateur g(z). y(x) un mot requ, e(x) lerreur telle que
w(e(x)) < (d—1)/2 avec un cycle de 0 de longueur < k. Le but est de
déterminer e(z). On note t = [(d — 1)/2].

Etape 1 : calculer les syndromes de S(x'y(x)) et on note s;(x) =
S(z'y(x)) mod g(x), pour i =0,1,2,---;

Etape 2 : trouver m tel que le w(s,,(z)) < t.

Etape 3 : calculer e(x) = 2" "s,,(x) mod (2" —1). Décoder y(x)
par y(x) — ()

Preuve : On montre l'existence de m de 1'étape 2. y(z) = c¢(z)+e(x)
en multipliant y(z) par 2™, on peut ramener le cycle de 0 de longueur
< k de e(x) a la fin et les composantes non nulles dans les n — k pre-
miéres composantes. Soit 7(z) = ((z™y(x) (modx™—1)) (mod g(x))) =
(x™y(z) (mod g(x))). on a w(r(x)) = w(e(x)) < t. D’ou lexistence de
m.

On pose p(z) := (" "s;(z) (mod ™ — 1))

" (y(x) — p(x)) = 2" (y(z) — 2" " sm ()
= z"y(x) — 2" s (2)
= sp(7) — 2" s ()
= (1 —2")sp(x)
= 0 modg(x)
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Puisque 2™ et g(z) sont premiers entre eux, y(z) — p(x) est divisible
par g(z), p(x) et e(x) sont dans la méme classe, d’ou

e(r) = p(x) = (@" s (x) (mod 2" — 1))

par le Lemme 5.5.2.
i | si(z)

1+ +2°
1+

T + 22

1

W N = O

EXEMPLE 5.5.6. Déterminons tous les codes binaires cycliques de
longueur 7. On a :
' 1= (z—1)(P+2+1)(2*+22+1) = (2+1)(@® o+ 1) (23 + 22+ 1).
Comme il y a trois facteurs, il y a 23 = 8 codes cycliques y compris 0
et FI.
i) 1 =1, engendre F}
ii) x + 1 =x + 1, engendre le code de parité
i) 2° + 1+ 1 =12+ 2+ 1, engendre le code [7, 4] de Hamming
w) 23+ 2% + 1 =2+ 2® + 1, engendre le code [7, /] de Hamming
v) (x+1)(2*+2+1) =2+ 2°+ 2%+ 1, engendre le code [7, 3]
vi) (x+1)(2® + 2%+ 1) =2 + 22 + 2 + 1, engendre le code [7, 3]
vii)) (2 +x+1)(2® +2? + 1) = 2%+ 2° + 2 + 2% + 2% + 2+ 1, engendre
le code de répitition
vitg) (x +1)(2* + x4+ 1)(2® + 22 + 1) = 27 + 1, engendre le code 0.
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5.6. Idempotents

En plus du polynéme générateur d'un code cyclique qui détermine
ce dernier, il y a le polynéme idempotent.
Un élément e d’un anneau est appelé idempotent si e? = e.

THEOREME 5.6.1. Soit C' un code cyclique dans F,. Alors :

i) il existe un unique idempotent e(x) € C tel que C = (e(x)),

i) si e(x) est un idempotent non nul de C, alors C = (e(x)) si et
seulement si e(x) est un unité de C.

Preuve :

THEOREME 5.6.2. Soit C un code cyclique sur F, de polynome
idempotent e(x). Alors le polynome générateur de C' est g(x) = pged(e(x), 2" —
1) dans F,[z].

Preuve :

THEOREME 5.6.3. Soit C' un [n, k]-code cyclique de polynome idem-

potent e(x) = S0 e;at. Alors la matrice k x n matriz

€o €1 €2 ce €n—2  €Ep—1
€n—1 €0 €1 ce €n—3 €Ep—2
€n—k+1 Cn—k+2 CEn—k+3 " En—k-1 CEn—k

est une matrice génératrice de C.

Preuve :

Exercice : Combien y a t-il de codes cycliques triaires de longueur
47 Pour chacun déterminer un polyndéme générateur et une matrice
génératrice.

Exercice : Combien y a t-il de codes cycliques de longueur 8 sur
F3? Donnez un polynéme générateur pour chacun.

Puisque (1 4+ z?") = (1 4+ z™)? , on a besoin de trouver seulement
les facteurs de 1 + 2™ , ol n est impair.

5.7. Codes quasi-cycliques

DEFINITION 1. Un code C' de longueur n est quasi-cyclique d’ordre
s ot s est un diviseur de n si on a 0°(x) € C pour tout © € C ot o est
la permutation circulaire.

Un code cyclique est un code quasi-cyclique d’ordre s = 1.

Si C' est un code de longueur n alors C' est quasi-cyclique d’ordre s
pour tout s qui divise n.

Si C' est un code quasi-cyclique d’ordre s alors le code dual C* est
quasi-cyclique d’ordre s.
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n | factorisation de (z™ — 1) dans Zs
(1+2°) =(1+a")°
1 | (1+x)
3 |(1+2)(1+a+a%)
5 |[(1+2)(1+x+ 2%+ 2%+ 27)
7T (1 +2)1+2+ 231+ 2 + 27)
9 |(1+2)1+z+2H)(1+ 23+ %)
|l +2)d+z+---+2°+ 2
Bl(1+z)(1+z+ -+t + 2
B+ (I+r+22) A+ +2)1+z+22 + 25+ 2Y)(1 + 2% + 27)
17| Q+2)l4+a+2+ 2" + 2+ 2"+ 2%) (1 + 2% + 2? + 2° + 2%)
9|1 +2)(1+z- -+ 27+ 21
21| (1+2) 1+ 2+ 22) 1 +2° + 23)(1 + 2 + 27)
(1+ 2?42+ 2° + 2% (1 + = + 2® + 2* 4 2°)
23| (1+2)1+x+ 25+ 25+ 27 + 2% + 2™
(1+2? + 2t + 2° + 2% + 219 + )
25| (1+2)1+x+27+ 22+ 2N+ 27+ 250 + 2P 4 2%)
27| (1 +2)(1+ 2+ 2%)(1 + 23 + 25 (1 + 27 + 2'8)
20| (1 +2)(1+a+-- + 2% +a2%)
31| (1+2)(1+a*+2°)(1+ a2’ +2°) (1 + o+ 2° + 2° + 2°)
I+z+a?+at +2°) (1 +a+2®+ 2" +2°) (142 + 2 + 2! + 2°)

TABLE 1. Factorisation de (2" — 1) dans Zs

PROPOSITION 5.7.1. Soit C' est un [n, k|-code quasi-cyclique d’ordre
s avec n = rs alors il existe une matrice k' X n (ot k' X k) génératrice

G de a forme :

A Ay Ay oo A,
G| A A
Ag Ag A4 s Al
ou les A; sont des matrice k?/ X 8.

Preuve : Par récurrence. Soit G%une matrice 1 x n nulle et un mot

aléatoire ¢ = (¢1, -+, ¢,) de C. Partageons c en r = n/s parties égales :
(€1, 5 ¢s), (Coxny v yC28)y =+ 5(Cnosi1, 5 ) - On construit les ma-
trices 1 x s Al = (coi_1y)41, " ,¢) , 1 < i < r obtenus par r shifs
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cycliques. On consideére alors la matrice

Ap Ay Ay o A
B B
AL AL AL oA

elle engendre un code C', si Cy = C alors on arréte sinon on considére
un mot code C' qui n’est pas dans C. On partage ¢y en s parties égales
on ajoute la deuxiéme ligne a la matrice A} pour obtenir la matrice
A2. On considére alors les matrices G?, G3,-- -, G7,

Puisque le rang de matrice G’ crois strictement avec j, ca va s 7arréter
pour un certain jo vérifiant &’ = jo.r > k puisque G’ engendre C. Re-
marquons que jo varie et dépend des élements aléatoires ¢y, co, - - -

REMARQUE 5.7.2. 1) Vu la forme de la matrice génératrice, il suffit
de connaitre les matrices Ay, -+ A, pour déduire la matrice G.
2) La matrice G engendre le code C' mais elle n'est pas nécessaire-

ment une matrice génératrice de C puisque k' peut étre plus grand que
k.

Dans ce qui suit nous montrons comment construire des sous-codes
quasi-cycliques d’ordre s a partir d’un code quasi-cyclique d’ordre s.

THEOREME 1. Soit C' un [n, k|-code quasi-cyclique d’ordre s et n =
rs. Alors il existe un sous-code quasi-cyclique d’ordre s strictement

inclue dans C' et de dimension >k —r =k — %

Si C est quasi-cyclique d’ordre s alors le dual C+ de C est quasi-
cyclique d’ordre s. Soit & un mot aléatoire de F3' — C* et considérons
la matrice génératrice obtenue en ajoutant x et ses r — 1 s-shift a une
matrice génératrice de C*. Le code C, engendré par G, est quasi-
cyclique par construction d’ordre s et de dimension n — k + r. Le dual
de C est quasi-cyclique d’ordre s de dimension >k —r =k — .

PROPOSITION 5.7.3. Soit C' un [n, k]-code quasi-cyclique d’ordre
s. Alors au moins 287" codes distincts peuvent étre construit par le
théoreme précédant.

Preuve : Le nombre de sous codes distinct est égale au nombre
de duaux de ces codes distincts. Le code dual est dimension au plus
n — k + r. L’union de tous les duaux possibles doit étre I’espace en
entier, puisque chaque code est de dimension au plus n — k + r alors il
y a au moins 2" ("*+7) = 987 sous-codes quasi-cycliques distincts.
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5.8. Exercices

Exercice 2. Déterminer tous les codes cycliques binaires de longueur
7.

Exercice 3. Trouvez tous les codes binaires cycliques de longueur 4.
Ainsi que ses matrices génératrice et de controle. De méme pour 5, 6
et 7.

Exercice 4. Montrez que le code Ham(2,3) n’est pas cyclique.

Exercice 5. Trouvez tous les codes triaires cycliques de longueur 4.
Ecrire une matrice de controle pour chacun d’entre eux.

Exercice 6. Montrer que le code {0000,1001,0110,1111} est équi-
valent a un code cyclique.

Exercice 7. Combien y a t-il de codes cycliques binaires de longueur
10.

Exercice 8. Soit C le code de longueur 7 sur Fy et de polynome
générateur g(x) = 2° + z + 1.

1) Déterminer le polynéme de controle de C.

2) Déterminer une matrice génératrice et une matrice de controle de
C.

3) C est-il un code de Hamming ?

Exercice 9. i) Montrer que le code binaire de Hamming Ham(r, 2)
est équivalent & un code cyclique.
ii) Quel est le polynome générateur de Ham(r,2)?

Exercice 10. Soient 4 et Cy deux codes cycliques de polynomes
générateurs g1(z) et go(x) respectivement . Montrer que C; C Cy si
seulement si go(x) divise g1(x).

Exercice 11. 1) Trouvez tous les codes linéaires cycliques trinaires de
longueur 4.

2) Ecrire une matrice de controle pour chacun des codes de la question
1).

3) Montrer que le code Ham(2,3) n’est pas cyclique.

Exercice 12. Soit (] et C5 deux codes cycliques sur F de longueur
n et de polynomes générateurs g;(x) et go(z) respectivement. Montrer
que les ensembles suivants sont des codes cycliques sur F de longueur
n et déterminer leur polynoémes générateurs.

1) ClﬂCg;
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2) C1 + Oy
3) {c(z) € Fp: c(x) = go(x)cr(x) mod(ax™ — 1), ¢1(x) € C1}
(Indication : considérer d’abord le cas pged(gi(x), g2(x)) = 1).

Exercice 13. Soit m un mot non nul de F} et soit Cy, le sous-espace
vectoriel de Fy engendré par la famille

{o'(m) |i=0,1,--- ,n—1}.

1. Montrer que

(a) Cp, est un code cyclique de longueur n.

(b) C,, est le plus petit code cyclique de longueur n sur F, contenant
le mot m.

(c) Le polynéme générateur du code C,, est le pged des polynomes
X" —1 et m(X).

2. Déterminer le polynome générateur de C,, lorsque q = 3, n = 9 et
m = 022011000.

Exercice 14. Dans Fy , (1+2) divise (2™ —1). Soit C' le codes binaire
cyclique de polynome de polynome générateur 1 + x et de longueur n.
Soit C'; un code quelconque binaire cyclique de polynéme générateur
g(x) et de longueur n.

a) Quelle est la dimension de C'?

b) Montrer que C' est ’ensemble des vecteurs de F de poids pair.

¢) Si C; a seulement des mots de poids pair, quelle relation y a-t-il
entre 1 + z et g(x)?

d) Si () a certains mots de poids impair, quelle relation y a-t-il entre
l+zetg(x)?

Exercice 15. 1. Montrer, sans effectuer de division euclidienne, que
dans F3[X], le polynéme g(z) = (X — 1)° divise le polynome (X° —1).
2. Soit C' le code cyclique de longueur 9 sur F3 , engendré par le poly-
néme g.

a) Quelle est la dimension de C'?

b) Quel est le nombre de mots de C'?
3. Développer le polynoéme g dans F3[X], en détaillant et justifiant les
calculs.
4. Pourquoi la matrice

222111000

G- 022211100
1002221110
0002221171
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est-elle une matrice génératrice du code C'?
5. Montrer que C' contient un mot de poids 3.
6. Montrer que le polynome de controle de C' est le polynéme h(x) =
X4+ 2X3 42X + 1. 7. Déterminer une matrice de controle de C.
8. Déterminer la distance minimale du code C et le nombre d’erreurs
que C' peut corriger.
9. Le mot m = 121102210 est recu.

a) Sous 'hypothése d’au plus une erreur, quel est le mot de code
émis 7

b) Quel est le message envoyé, sachant qu’il est encodé par la ma-
trice G 7

Exercice 16. Code ternaire de Golay.
(1) Montrer que le polynéme cyclotomique ®1; a pour facteurs irré-
ductibles sur F3 polynomes P(X) = X5+ X* — X3+ X2 — 1 et
Q(X) = X5~ X3+ X2~ X — 1 sur Fa.
(2) On considére le code Gy; engendré par P(X). Donner sa lon-
gueur, sa dimension et montrer que sa distance minimale est 4
ou 5.

(3) Donner un générateur du sous-code pair de Gy;.
(4) Montrer que Gy; est la somme directe de son sous-code pair et
du code engendré par Pq;.

(5) On introduit la forme bilinéaire symétrique (z, y) sur F3[X] /(X1 —
1) pour laquelle {1, X, X2 --- | X%} est une base orthonormale.
Montrer que pour tout x € F3[X]/(X™ — 1), on a w(z) =
(z,x) mod 3 ou w(x) désigne le poids de .

(6) Vérifier que G est orthogonal a son sous-code pair et calculer
le poids de &4;.

(7) En déduire que, pour tout x € Gy, w(z) =0 ou 2 mod 3 et que
la distance minimale de Gy est 5.
(8) Montrer que le code Gy; est parfait.
Le code G1; s’appelle code ternaire de Golay

Exercice 17. Soit C le code binaire linéaire de longueur 7 dont une
matrice de controle est

H = ( 10000111010010110010110100011110 )

1. Combien valent la dimension et la distance de C'? Ecrire une matrice
génératrice de C.

2. Décoder les mots recus r; = 00001110 et r, = 00010011, en suppo-
sant qu’il y a eu au plus une erreur de transmission.
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3. Parmi les mots t; =77770000, t, =707070000 et t3 =70707070 qui ont
subi des effacements, les autres bits ayant été transmis correctement,
lesquels peut-on décoder ?

4. Le code C est-il MDS? Cyclique 7 Parfait ?

5. Montrer que, pour tout mode de code m de C, le mot m + 11111111
appartient a C. En déduire le nombre de mots de C de poids 4.

6. Montrer que C' est équivalent au code étendu du code de Hamming
Ham(8).

7. Montrer que C est son propre orthogonal.

Exercice 18. Soit g(x) le polynéme générateur d’un code cyclique
binaire C.
a) Montrer que si z + 1 divise g(z) alors C ne contient aucun mot de
poids impair.
b) Montrer que si n est impair et z + 1 ne divise pas g(z) alors C
contient le mot 1---1.
¢) Montrer que si n est le plus petit entier tel que g(x) divise 2" + 1
alors la distance minimale de C' est au moins 3.
d) On suppose que C contient des mots de poids pairs et impaires. Soit
A(z) le polynome énumeérateur de poids de C'. Montrer que le polynoéme
(x+1)g(z) engendre un code cyclique binaire de polynéme énumérateur
de poids A;(z) = 1 [A(2) + A(—=)].

Rappel; le polynome énumérateur de poids A(X) =>"" A;2" ou
Ai = [{ce Cfwlc) =1}

Exercice 19.
1. Montrer, sans effectuer de division euclidienne, que dans F3[X], le
polynome g(z) = (X — 1)5 divise le polynome (X° — 1).
2. Soit C' le code cyclique de longueur 9 sur F3 , engendré par le poly-
néme g.

a) Quelle est la dimension de C'?

b) Quel est le nombre de mots de C'?
3. Développer le polynome g dans F3[X], en détaillant et justifiant les
calculs.
4. Pourquoi la matrice

222111000

G- 022211100
1002221110
000222111

est-elle une matrice génératrice du code C'?
5. Montrer que C' contient un mot de poids 3.
6. Montrer que le polynome de controle de C' est le polynome h(x) =
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X* 4 2X3 42X + 1. 7. Déterminer une matrice de contrdle de C.
8. Déterminer la distance minimale du code C et le nombre d’erreurs
que C' peut corriger.
9. Le mot m = 121102210 est recu.

a) Sous I'’hypothése d’au plus une erreur, quel est le mot de code
émis 7

b) Quel est le message envoyé, sachant qu’il est encodé par la ma-
trice G 7

Master C2SI - Théorie des codes I E. M. Souidi






Bibliographie

[1] Blackmore, T., Norton, G.H. : Matrix-product codes over F,. Appl. Algebra
Eng. Comm. Comput. 12(6), 477-500 (2001).

[2] W. Cary Huffman et Vera Pless, Fundamentals of Error-Correcting Codes,
Cambridge University Press, 2003.

[3] J. H. van Lint, Introduction to Coding Theory, Springer.
[4] D. G. Hoffman, D. A. Leonard, Coding Theory the essentials, Marcel Dekker.

[5] C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J.,
27, pp. 379-423, 623-656 (1948).

[6] Tietavinen A. : On the nonexistence of perfect codes over finite fields, STAM
J. Appl. Math. 24, 88-96 (1973).

[7] Matthieu Finiasz : Nouvelles constructions utilisant des codes correcteurs d’er-
reurs en cryptographie. Thése doctorat, ALcole Polytechnique.

[8] M. Van Der Vlugt, The True Dimension of Certain Binary Goppa Codes IEEE
Trans. Inform. Theory 31, no. 2, pp 397-398, 1990.

[9] Reed, I. S. and Solomon, G., Polynomial Codes Over Certain Finite Fields,
SIAM Journal of Applied Math., vol. 8, 1960, pp. 300-304.

71



