
El Mamoun SOUIDI

JavaScript
Cours et exercices corrigés

Module Programmation Web 2 : Langage Javascript
en S4 Tronc commun : Informatique (MIP)

Année 2024

Table des matières

1 Introduction à Javascript 1

1.1 Architecture client serveur . 1

1.2 Langage client/serveur . 2

1.3 Fonctionnement de JavaScript . 3

1.4 Langages du Web . 4

1.5 Qu’est ce que JavaScript? . 5

1.6 Caractéristiques du langage JavaScript . 7

1.6.1 Langages interprété ou compilé . 7

1.6.2 JavaScript et les autres langages . 7

1.6.3 JavaScript en évolution . 8

1.6.4 TypeScript . 8

1.7 JQuery . 8

1.8 Que peut-on faire avec JavaScript? . 8

1.9 Mise en pratique de JavaScript . 8

1.10 Console JavaScript de navigateur . 9

1.11 Contenu de ce livre . 9

1.12 Exercices . 9

1.13 Où placer le code source Javascript? . 10

1.14 Bases du langage JavaScript . 12

1.15 La méthode document.write() . 12

1.16 Les fenêtres de dialogue . 13

1.16.1 La méthode alert() . 13

1.16.2 La méthode prompt() . 14

1.16.3 La méthode confirm() . 15

1.17 Fonctions de base . 15

1.18 Exercices . 16

iii

TABLE DES MATIÈRES

2 Variables et types de données 17
2.1 Variables . 17

2.1.1 Nom de variable . 17
2.1.2 Déclaration de variable . 18

2.2 Types de données . 20
2.2.1 Conversion de types . 22

2.3 Constantes . 23
2.4 Opérateurs arithmétiques, booléens et de comparaison 24

2.4.1 Les opérateurs arithmétiques . 24
2.4.2 Les opérateurs de comparaison . 24
2.4.3 Les opérateurs associatifs . 25
2.4.4 Les opérateurs d’incrémentation . 25
2.4.5 Les opérateurs logiques . 26
2.4.6 La priorité des opérateurs Javascript 26
2.4.7 Opérateur sur les chaı̂nes de caractères 27

2.5 Structures conditionnelles . 28
2.5.1 La structure if . 28
2.5.2 Une autre structure conditionnelle 28
2.5.3 switch . 29

2.6 Structures itératives . 30
2.6.1 La boucle for . 30
2.6.2 La boucle for in . 30
2.6.3 while . 31
2.6.4 do while . 31

2.7 Exercices . 32

3 Les fonctions 33
3.1 Programmation de fonction . 34
3.2 Fonctions de haut niveau prédéfinies . 36
3.3 Exercices . 36

4 Objets et tableaux 37
4.1 L’objet Array . 37

4.1.1 Tableaux . 37
4.1.2 Tableaux associatifs . 39

4.2 Tableaux prédéfinis de JavaScript . 39

iv

TABLE DES MATIÈRES

4.2.1 Objet prédéfini images[] . 39
4.2.2 L’objet prédéfini links[] . 40
4.2.3 L’objet prédéfinis forms[] . 41
4.2.4 L’objet prédéfinis elements[] . 42
4.2.5 Localisation de balise . 42

4.3 Exercices . 43

5 Manipulation du DOM 45
5.1 Qu’est-ce que le DOM? . 45
5.2 Sélection des nœuds du DOM . 46

5.2.1 propriétés . 48
5.3 Manipulation des attributs des éléments . 48
5.4 Manipulation du contenu . 49
5.5 Suppression de nœuds . 50
5.6 Création de nœuds . 50
5.7 Changement de style . 51
5.8 Exercices . 52

6 Gestion des événements 53
6.1 Exercices . 55

7 Programmation orientée objet en Javascript 59
7.1 Défitions d’objet et classe . 59
7.2 JavaScript et programmation orienté objet 62
7.3 Exercices . 64

8 Fonctions avancées 65

9 Gestion des erreurs et débogage 67

10 Programmation asynchrone en Javascript 69

11 Les modules en JavaScript 71

v

TABLE DES MATIÈRES

vi

1
Introduction à Javascript

<script type="text/javascript">

<!--

. . . code de javascript . . .

-->

</script>

Dans ce chapitre, nous ...

Pour apprendre JavaScript il faut être familiarisé avec le langage HTML et des notions
du langage CSS. En plus l’utilisation d’un éditeur de texte et d’un navigateur.

Un script est un (petit) programme ...

Exemple d’éditeurs : gedit sous Linux, Sublime, Visual Studio, Notepad, TextPad, etc.

Exemple de navigateurs : Google Chrome, Mozilla Firefox, Microsoft Edge ou autres

On peut aussi utiliser des environnement intégré de développement comme Net-
Beans, Eclipse, Visual Studio, and Brackets et autres.

1.1 Architecture client serveur

Une architecture client/serveur est un réseau formé de deux types d’ordinateurs : les
clients et les serveurs.

1

CHAPITRE 1. INTRODUCTION À JAVASCRIPT

FIGURE 1.1 – Architecture client serveur

Un client est un ordinateur équipé de programmes, il est actif : il envoie des requêtes
au serveur pour demander des services.

Un serveur est une machine généralement puissante en terme de capacités d’entrée-
sortie, il est passif, à l’écoute et prêt à répondre aux requêtes envoyées par des clients. Un
serveur est généralement capable de servir plusieurs clients à la fois.

Un serveur peut être spécialisé en serveur d’applications, de fichiers, de terminaux,
ou encore de messagerie électronique.

Les programmes de machines clientes communiquent avec les programmes de ma-
chines de type serveurs.

Par exemple le navigateur Web d’un client qui envoie une requête (le contenu d’une
page Web) à un serveur Web qui lui renvoie la réponse.

un serveur de base de données permet aux clients de récupérer des données stockées
dans une base de données.

Un internaute connecté à l’internet par son ordinateur et un navigateur web est le
client, le serveur est constitué par le ou les ordinateurs contenant les documents visités.

Les courriels sont envoyés et reçus par des clients et gérés par un serveur de messa-
gerie.

L’internet est une architecture client serveur. Lorsque vous visitez un site web vous
êtes client. Et les documents que vous visitez sont dans un serveur. Un serveur est un
grand ordinateur équipé de logiciels qui répondent aux requêtes émis par le navigateur.

1.2 Langage client/serveur

Pour accéder à données côté serveur, nous avons besoin de lancer des applications.
Comme langage de programmation pour réaliser ces applications PHP, ASP, JSP et bien

2

1.3. FONCTIONNEMENT DE JAVASCRIPT

d’autres.

Lorsqu’un document HTML est demandé par le navigateur, le serveur le lui envoie.
C’est le navigateur qui se charge alors de l’interprétation du contenu HTML CSS et Ja-
vaScript . Par contre si ce document HTML contient du code PHP alors c’est le serveur
qui l’interprète et envoie le résultat sous forme de code HTML au navigateur.

PHP est un langage de programmation dont le code source s’insère aussi dans le code
HTML. Par contre, ce code PHP est interprété par le serveur. PHP permet par exemple de
traiter, d’enregistrer et d’accéder à des données dans un serveur. Il permet aussi de traiter
des données à distance.

Un langage côté serveur est exécuté par le serveur. Il peut être utilisé pour le traite-
ment de données reçues via un navigateur. Comme exemples de langage côté serveur
on site PHP, Perl, Python, Ruby, Java. Lorsque Node.js est arrivé, il a permis d’utiliser
JavaScript côté serveur en plus du côté client. Ce livre couvre aussi Node.js.

1.3 Fonctionnement de JavaScript

Les langages HTML et CSS offrent des fonctionnalités limitées d’interactivité avec
l’utilisateur ; comme les liens, le survole d’une zone et les pages qu’ils réalisent sont sta-
tiques. Le langage JavaScript vient les compléter pour rendre les pages Web dynamiques
et interactives. Il permet entre autres de faire des calculs, interactifs avec l’utilisateur et
émettre des commentaires, gérer le temps : au bout d’un temps précis émettre un spot
publicitaire, afficher l’heure sur une page Web, faire défiler des images dans un ordre
programmé, afficher des images aléatoirement, modifier le contenu d’une page Web en
fonction du temps, faire des traitements côté client par le navigateur et l’ordinateur du
client pour soulager les serveurs. Le contrôle de saisie, un champ où on ne peut saisir que
les nombres, ou que les lettres etc. Un autre exemple par exemple JavaScript peut éviter
à un serveur de messagerie de vérifier si le mot de passe et le login ont été saisis et que
l’adresse électronique saisie contient le @ et le point ou non.

JavaScript peut aussi être utilisé pour écrire des programmes de grande taille : pro-
gramme de chiffrement et de déchiffrement de données, etc...

Le langage JavaScript est un langage de programmation. Il permet d’écrire des pro-
grammes qui font des tâches bien précise. Le code source est inséré dans le code HTML
grâce à la balise <script>...</script>. Lorsque qu’on envoie une requête deman-
dant une page web contenant du code source JavaScript , le serveur renvoie le code
source HTML et JavaScript au navigateur qui se charge de les interpréter. Par contre si le

3

CHAPITRE 1. INTRODUCTION À JAVASCRIPT

fichier HTML contient du code PHTP par exemple, c’est le serveur qui se charge de son
interprétation et envoie au navigateur uniquement le résultat du traitement au format
HTML

<html>

<head> ... </head>

<body>

code HTML

...

<script type="text/javascript">

. . . code de JavaScript . . .

interprété par le navigateur

</script>

...code HTML

<?php

. . . code PHP . . .

interprété par le serveur et le résultat envoyé au format HTML

?>

code HTML

</body>

</html>

1.4 Langages du Web

Pour créer un site web professionnel il faut au moins maı̂triser quatre langages :

– HTML HyperText Markup language, langage déclaratif de balisage standard pour
créer des pages web.

– CSS Cascading StyleSheet langage déclaratif de feuille de style en cascade. Il permet
notamment d’améliorer la mise en forme de document HTML et de séparer totalement le
contenu d’un document de sa mise en forme.

– JavaScript langage de programmation côté client. Ce sont les navigateurs qui in-
terprète le code JavaScript . Ce qui permet de soulager les serveurs. Vu sa popularité,
tous les navigateurs sont équipés d’interpréteurs JavaScript.

– au moins un langage de programmation côté serveur. Comme PHP, ASP, JSP ou
autres.

4

1.5. QU’EST CE QUE JAVASCRIPT?

1.5 Qu’est ce que JavaScript?

JavaScript est un langage de programmation qui permet d’apporter du dynamisme
et de l’interactivité au langage HTML qui est statique.

JavaScript a été initialement élaboré en mai 1995 en 10 jours, sous le nom Mocha par
Brendan Eich de chez Netscape pour son navigateur Web, Netscape Navigator.

En septembre 1995, dans Netscape Navigator 2.0 beta, Mocha fût nommé LiveScript.
et En décembre 1995, dans Netscape Navigator 2.0 beta 3 LiveScript prit son nom définitif
JavaScript .

JavaScript a été standardisé deux fois :
– ECMA-262 par Ecma International 1.
– ISO/IEC 16262 par l’Organisation internationale de normalisation (ISO) et la Com-

mission électrotechnique internationale (CEI).
sous le nom ECMAScript et non JavaScript , car ce dernier nom a été une marque

déposée de la société Sun devenue par la suite Oracle
En principe, JavaScript et ECMAScript désignent la même chose. Mais parfois :
– Le terme JavaScript fait référence au langage et à ses implémentations.
– Le terme ECMAScript fait référence au standard de langage et aux versions linguis-

tiques.
Depuis 2015, des versions majeures sont publiées chaque mois de juin. Voir la liste 2

des versions depuis 1997 et les modifications apportées par une version par rapport à sa
prédécesseur.

TC39 est le comité qui développe JavaScript . Ses membres sont, à proprement parler,
des compa- niés : Adobe, Apple, Facebook, Google, Microsoft, Mozilla, Opera, Twitter et
autres.

Tous les deux mois, le TC39 organise des réunions. Les procès-verbaux de ces réunions
sont publics. 3.

Et plus tard co-fondateur du projet Mozilla, de la Mozilla Foundation et de la Mozilla
Corporation. JavaScript est reconnu par tous les navigateurs depuis 1996. Pour garder
la compatibilité, et tout comme, le langage HTML ou CSS, JavaScript est standardisé en
1997 par le comité spécialisé, ECMA 4 et en 1998 par ISO-16262.

JavaScript a été créé à l’origine pour valider les entrées de formulaire.

1. ECMA, un acronyme pour European Computer Manufacturers Association
2. https ://en.wikipedia.org/wiki/ECMAScript version history
3. https ://github.com/tc39/notes
4. European Computer Manufactures Association est un organisme européen de standardisation pour

les systèmes d’information et de communication.

5

CHAPITRE 1. INTRODUCTION À JAVASCRIPT

Microsoft a de son côté développé, pour son navigateur Internet Explorer, en 1996,
le langage JScript, similaire à JavaScript et correspondant également à un dialecte du
langage ECMAScript. Il en est de même pour FireFox.

Ainsi, chaque navigateur supporte ECMAScript par l’intermédiaire de son propre
dialecte. Le terme JavaScript désigne en fin de compte par abus de langage, tous ces
dialectes.

ECMAScript est, en fin de compte, le nom standard et international des spécifications
utilisées pour JavaScript.

JavaScript est un langage de script interprété, non typé et orienté objet. Son code
est intégré dans le langage HTML. Il est différent du langage Java et sont à des finalités
différentes. Sa syntaxe est proche de celle du langage C.

JavaScript est toujours utilisé conjointement avec HTML. Il ne peut être utilisé pour
réaliser des applications indépendantes.

JavaScript permet d’exécuter des programmes du côté client (navigateur) et ainsi de
soulager les serveurs qui hébergent les pages web visitées. En plus, l’exécution de JavaS-
cript est rapide.

Par exemple JavaScript permet de vérifier qu’un champ n’a pa été saisi et en avertir
l’utilisateur, au lieu de faire cette vérification par le serveur. Faire des calculs, afficher
des messages au visiteur d’une page, modifier le contenu de page web, défiler une série
d’images sur l’écran. Déclencher une réaction à une action de l’utilisateur, comme un
clique, un survol de souris etc. JavaScript permet aussi de développer des applications
Internet.

Cependant, JavaScript ne permet aucune confidentialité au niveau des codes, car
celui-ci est accessible à tout visiteur de page Web. Il suffit alors d’afficher le code source 5

pour voir le code en JavaScript . En JavaScript et pour la sécurité de votre ordinateur, il
est impossible de lire ou d’écrire dans un fichier.

le code source

JavaScript est un langage interprété. Le code source est interprété, par un logiciel qui
s’appelle interpréteur intégré dans les navigateurs. L’interpréteur interprète les lignes du
code source une par une.

5. avec FireFox cliquer sur le bouton droit de la souris puis choisir View Page Source

6

1.6. CARACTÉRISTIQUES DU LANGAGE JAVASCRIPT

1.6 Caractéristiques du langage JavaScript

JavaScript est un langage à typage dynamique, il n’est pas nécessaire de déclarer le
type d’une variable. En écriant dans un code JavaScript x=5 alors x est considéré comme
un nombre et si on écrit x=’Bonjou’ x est considéré comme une chaı̂ne de caractère.

La syntaxe ressemble à celle du langage C

JavaScript possède des fonctionnalités orientées objet : notion d’objets, héritage, classes,
etc.

La programmation orientée objet est un paradigme de programmation développé
dans les années 1990. Voir Chap 7 pour plus de détails.

1.6.1 Langages interprété ou compilé

Le code source est d’abord transformé en un fichier binaire par un logiciel qui s’ap-
pelle compilateur. Le système d’exploitation va utiliser le code binaire et les données
d’entrée pour calculer les données de sortie.

Dans un langage interprété, le même code source pourra être utilisé sous différentes
plate-formes. Alors que pour un langage compilé, il faudra compiler le code source sous
une plate-forme pour l’utiliser avec celle-ci. Dans un langage compilé, le programme est
plus rapide que le même programme dans un langage interprété.

Le code binaire est indépendant du code source et du compilateur. Par contre, un
programme interprété a besoin l’interpréteur à chaque lancement du programme.

Les langages C, C++, sont des langages interprétés. JavaScript , PHP, Python sont des
langages compilés.

Java fonctionne autrement. C’est un langage compilé en langage intermédiaire byte-
code, qui fonctionne sous toutes les platforme à condition que l’application JVM (Java
Virtual Machine) soit installé.

1.6.2 JavaScript et les autres langages

Le langage JavaScript conserve la tête du classement RedMonk 6 version (juin 2021)

1. JavaScript, 2. Python, 2. Java, 4. PHP, 5. CSS, 5. C++, 5. C#, 8. TypeScript, 9. Ruby,
10. C.

6. RedMonk est une société d’analystes spécialisée dans les développeurs de logiciels https ://red-
monk.com

7

CHAPITRE 1. INTRODUCTION À JAVASCRIPT

1.6.3 JavaScript en évolution

JavaScript est utilisé en blockchain !

W3C établit non seulement des normes pour HTML et CSS, mais également pour la
façon dont JavaScript interagit avec les pages Web à l’intérieur d’un navigateur Web.

Les mise à jour sont maintenant identifiés par année de sortie. ES2016, ES2017, ES2018,
ES2019, et ES2020

1.6.4 TypeScript

Le langage TypeScript, rendu public en octobre 2012, de Microsoft est un sur-ensemble
de JavaScript (tout code JavaScript correct peut être utilisé avec TypeScript) pour les
grands projets. Il est libre et open source. Il supporte la spécification ECMAScript 6. La
version 4.0 de TypeScript a été publiée en février 2021.

1.7 JQuery

JQuery, (http ://jquery.com/) est une bibliothèque JavaScript libre et multi-plateforme
créée pour faciliter la programmation en javascript. JQuery est facile à maı̂triser.

Ajax (Asynchronous JavaScript and XML) n’est pas un nouveau langage de program-
mation mais un ensemble de technologies qui permettent la mise à jour du contenu d’une
page Web d’une manière rapide et sans chargement complet de celle ci. Ajax combine
HTML, JavaScript, CSS, XML, DOM et XMLHttpRequest.

1.8 Que peut-on faire avec JavaScript?

JavaScript est principalement utilisé pour interagir avec les utilisateurs.

Nous pouvons développer des applications avec JavaScript qui rivalisent avec la vi-
tesse et la fonctionnalité des applications de bureau.

1.9 Mise en pratique de JavaScript

Pour les débutants en JavaScript il faut lire séquentiellement ce livre. Saisir le code et
le tester. Vous pouvez modifier le code et continuer à tester. Cette démarche permet aussi
me mémoriser le vocabulaire et la syntaxe du langage.

8

1.10. CONSOLE JAVASCRIPT DE NAVIGATEUR

Pour pratiquer du JavaScript il suffit d’avoir un éditeur de texte et un navigateur.
Tous les navigateurs (sauf les très anciens) sont équipés d’interpréteurs de code JavaS-
cript .

Pour voir les erreurs, vous pouvez utiliser la console de votre navigateur. Par exemple
avec FireFox Menu , More Tooms, Web developpers Tools, puis console Ou simplement
appuyer sur la touche F12

Node.js est un environnement de serveur open source. Il permet d’interpréter le code
JavaScript . Il fonctionne sous Windows, Linux, Unix, Mac OS X, etc.

Node.js permet la programmation hors les navigateurs.

Node.js permet la programmation côté serveur.

céder à la console : F12, Ctrl-Shift-I,

1.10 Console JavaScript de navigateur

Chaque navigateurs Web dispose d’une console, nommée aussi outils de développements,
qui permet de tester des morceaux de code JavaScript . Pour accéder à la console de votre
navigateurs :

– Firefox : Shift+Ctrl+K ou voir menu

ou il suffit de chercher sur le net ”console nom de votre navigateur”

1.11 Contenu de ce livre

1.12 Exercices

Exercice 1. Définir une architecture cliet/serveur.

Exercice 2. Qu’est ce qu’un langage de programmation interprété ? compilé ?

Exercice 3. Que peut-on faire avec JavaScript?

Exercice 4. Quel est la différence entre JavaScript , ECMAScript et TypeScript?

Exercice 5. Qui développe JavaScript?

Exercice 6. Comment et où place-t-on le code source JavaScript?

Dans ce chapitre nous apprenons les bases du langage JavaScript . Puis nous écrirons
des script simples d’affichage et de lecture de données saisies au clavier.

9

CHAPITRE 1. INTRODUCTION À JAVASCRIPT

1.13 Où placer le code source Javascript?

Le code JavaScript est inséré directement dans le document HTML, autannt de fois
que nécessaire ou comme événement. ou mis dans un fichier externe et appelé dans le
code HTML. Il y a trois trois façons d’insérer le code JavaScript .

Les programmes JavaScript sont écrits avec le codage Unicode ce qui permet d’utiliser
n’importe quel caractère Unicode dans les chaı̂nes et les commentaires.

Unicode est adopté comme standard par la plupart des systèmes d’exploitation mo-
dernes pour la représentation de texte.

Unicode comprend l’intégralité des caractères de toutes les langues du monde.
La variante Unicode UTF-8 s’est imposée comme le standard pour le codage de docu-

ments HTML. Dès 2016, plus de 80 % des sites Web les plus visités au monde utilisaient
UTF-8 pour leurs documents HTML.

Rappelons que l’Unicode 7 est un système de codage universel de caractères, il re-
groupe plus de 143 859 caractères de différent alphabets (version 2020), des symboles
mathématiques, chinois, etc. Ce codage est sur deux octets ce qui autorise le codage de
216 = 65536 caractères.

1) Grâce à la balise <script> de HTML à insérer dans la balise <head>, dans la
balise <body> Cette balise signale au navigateur qu’il s’agit d’un script JavaScript à
interpréter. Une page HTML peut contenir plusieurs balises <script> mais elles ne
doivent pas être imbriquées. La sytaxe est comme, il suit,

<!DOCTYPE html>

<html lang="fr">

<head>

<script type="text/javascript">

. . . code en javascript . . .

</script>

<script type="text/javascript" src="chemin/fichier.js"></script>

</head>

<body>

. . . code HTML. . .

<script type="text/javascript">

. . . code en javascript . . .

</script>

. . . code HTML. . .

<script type="text/javascript">

. . . code en javascript . . .

</script>

7. https ://unicode-table.com/fr/

10

1.13. OÙ PLACER LE CODE SOURCE JAVASCRIPT?

. . . code HTML. . .

</body>

</html>

Ou

<script language="javascript">

. . . code de javascript . . .

</script>

Pour les anciens navigateurs qui n’interprètent pas JavaScript on met le code en com-
mentaire :

<script type="text/javascript">

<!--

. . . code de javascript . . .

-->

</script>

Rappelons que <!-- ... --> est pour mettre des commentaires en HTML.

Lorsque le navigateur repère les balises ¡script¿, au lieu d’afficher leur contenu, il
lance son moteur JavaScript pour interpréter les instructions du code.

Le code JavaScript n’est jamais montré à l’utilisateur. Mais peut être facilement consulté
en accédant au code source de la page dans le navigateur.

type de ¡script¿ peut être omit, par défaut c’est JavaScript .

2) Grâce aux événements. Un événement est réaction à une action de l’utilisateur. Par
exemple un clique souris est une action. Un exemple de réaction à un clique sur un lien
ouvrira la page web indiquée par ce lien.

<balise onEvent ="code JavaScript à insérer">...</balise>

Comme exemple d’événement onEvent, on cite onClik (clique souris), onMouseover (sur-
vole de souris). Lorsque l’action onEvent est faite par l’utilisateur, le code JavaScript cor-
respondant est déclenché. Nous allons voir les événements plus tard.

3) Insérer du code JavaScript à partir d’un fichier externe (avec l’extension .js) :

<script type="text/javascript" src="chemin/fichier.js"></script>

Le fichier contenant le code JavaScript , peut être sur une machine locale ou à distance,
hébergé dans un site web. Un fichier externe ne doit pas contenir la balise <script>

maid directement le code JavaScript . Son avantage est la possibilité de le partager avec
plusieurs page web.

11

CHAPITRE 1. INTRODUCTION À JAVASCRIPT

1.14 Bases du langage JavaScript

Contrairement aux langages HTML et CSS, JavaScript est sensible à la casse, c’est à
dire il y a une différence entre majuscule et minuscule.

Chaque instruction se termine par un point-virgule (comme en langage C, C++, Java
etc.).

Pour mettre en commentaire le reste d’une ligne on la précède par double slash //
et pour mettre en commentaire plusieurs lignes on les met entre /* et */ (comme en C,
C++, Java etc.). Les commentaires ne peuvent être imbriqués.

Une chaı̂ne de caractère est une suite de caractères entre les guillemets anglaise simple
’ et ’ ou entre les guillemets anglaises double ” et ”.

En JavaScript , le symbole d’addition + sert pour l’addition de nombres mais aussi
pour concaténer deux chaı̂ne de caractères.

1.15 La méthode document.write()

Nous allons expliquer cette nouvelle notation dans le chapitre intitulé programmation
orienté objet. Pour le moment write() est une méthode qui agit sur l’objet et document est
un objet.

La méthode document.write() permet l’affichage de ses arguments dans le corps du
document HTML. Elle prend un ou plusieurs arguments séparés par virgule. Elle accepte
les balises HTML. La syntaxe est assez simple soit

<script type="text/javascript">

document.write("texte1", "texte2", ... ");

</script>

ou

<script type="text/javascript">

document.write("texte1"+"texte2"+... ");

</script>

On peut aussi écrire une variable, soit la variable

<script type="text/javascript">

resultat=123;

document.write(resultat);

</script>

12

1.16. LES FENÊTRES DE DIALOGUE

FIGURE 1.2 – Fenêtre alert()

On peut utiliser les balises HTML dans document.write() pour produire la mise en
forme de son contenu.

<script type="text/javascript">

document.write("
Le résultat est : ");

</script>

La méthode writeln() est proche de write() à ceci près qu’elle ajoute un retour chariot à
la fin des caractères affichés par l’instruction. Ce qui n’a aucun effet en HTML. On utilise
alors
 dans document.write() pour retour à la ligne. Mais comme un retour à la ligne
n’a aucun effet en HTML, ces deux méthodes se comportent identiquement.

1.16 Les fenêtres de dialogue

1.16.1 La méthode alert()

La méthode alert() de l’objet window permet d’afficher un message d’alert dans une
fenêtre voir Figure 1.16.1 qui peut être le résultat d’un traitement ou un simple message
à l’utilisateur. La syntaxe est

<script type="text/javascript">

alert("Message d’alerte");

</script>

<script type="text/javascript">

alert("Bienvenue\nJavaScript est facile ! ");

</script>

\ permet de créer une nouvelle ligne.

13

CHAPITRE 1. INTRODUCTION À JAVASCRIPT

FIGURE 1.3 – Fenêtre prompt()

La méthode alert() permet aussi d’afficher le résultat d’un script.

<script type="text/javascript">

res=123;

alert("Le résultat est :\n"+res);

</script>

1.16.2 La méthode prompt()

La méthode prompt() permet de récupérer une information provenant de l’utilisateur
et lui donner un nom pour l’utiliser comme variable par la suite. Voir Figure 1.16.3. Elle
requiert deux arguments : le texte d’invite destiné à l’utilisateur et la chaı̂ne de caractère
par défaut dans le champ de saisie. La syntaxe est :

<script type="text/javascript">

var v=prompt(message[,message par defaut optionnel])

</script>

Le deuxième argument est optionnel. Exemple :

<script type="text/javascript">

var reponse = prompt(’Posez ici votre question’,’chaı̂ne par défaut’);

</script>

La valeur récupérée par la méthode prompt() est toujours de type chaı̂ne de caractère,
comme le montre le script suivant

14

1.17. FONCTIONS DE BASE

<script type="text/javascript">

n=prompt("saisir un entier ");

t=typeof(n); // affiche le type

alert("ce que vous avez saisi est de type : "+t)

</script>

Si on désire convertir cette valeur en nombre, on peut utiliser la fonction parseInt()
(pour la convertir en un nombre entier) ou parseFloat() (pour la convertir en nombre
décimal).

1.16.3 La méthode confirm()

La méthode confirm() prend un seul argument de type chaı̂ne de caractère, et affiche
une fenêtre de confirmation avec un message et deux boutons au choix : ”OK” et ”An-
nuler”. Voir Figure 1.16.3. Cette méthode retourne true si on clique ”OK” et false si on
clique ”Annuler”. Syntaxe

<script type="text/javascript">

window.confirm("Message");

</script>

confirm() est souvent utilisé dans une structure conditionnelle par exemple :

<script type="text/javascript">

if(confirm("Voulez-vous visiter\n le site de la FSR ?"))

{document.location.href=’http://www.fsr.ac.ma’; }

</script>

permet de choisir une option : ”OK” on est amené sur le lien de la FSR et ”Annuler” rester
sur la page courante.

1.17 Fonctions de base

parseFloat(chaı̂ne) : permet de transformer une chaı̂ne de caractères en un nombre
flottant si possible, sinon renvoie NaN (Not a Number)

Syntaxe : parseFloat(string)
parseFloat(”3.14”) ;
parseFloat(”AB2”) ; // retourne NaN
parseInt(string[, base]) : Analyse une chaı̂ne de caractères et retourne un nombre

entier dans la base spécifiée. Si aucune base n’est spécifiée, la base décimale est alors
considérée par défaut. La base peut être 2 (binaire), 8 (octal), 10 (décimal), 16 (hexadécimal).

15

CHAPITRE 1. INTRODUCTION À JAVASCRIPT

FIGURE 1.4 – Fenêtre confirm()

<script type="text/javascript">

c=parseInt(’100’,16); document.write(c) //retourne 256

c=parseInt(’A’,16); document.write(c) //retourne 10

c=parseInt(’A’,8); document.write(c) //retourne NaN

c=parseInt(’16’,8); document.write(c) //retourne 14

c=parseInt(65,2); document.write(c) //retourne NaN

c=parseInt(1000001,2); document.write(c) //retourne 65

</script>

eval : évalue une chaı̂ne de caractère représentant une expression JavaScript, une ins-
truction ou une suite d’instructions JavaScript.

Par exemple : eval("2 + 3"); retourne 5.

1.18 Exercices

Exercice 7.

Exercice 8.

Exercice 9.

Exercice 10.

Exercice 11.

Exercice 12.

16

2
Variables et types de données

Dans ce chapitre, nous allons comprendre ce qu’est une variable, comment la déclarer
Nous allons voir aussi les types reconnus dans JavaScript . les nombres number, les
chaı̂nes de caractères string, et d’autres.

2.1 Variables

2.1.1 Nom de variable

Une variable stocke des données qui peuvent être modifiées au cours de l’exécution
d’un programme. Le nom d’une variable ne doit pas commencer par un chiffre et ne doit
contenir que des lettres non accentuées, des chiffres, le symbole tiret bas (underscore) ou
le dollar symbole $ (mais jamais d’espace, de caractère spécial comme , # etc, de symbole
de ponctuation ou autres).

Nous rappelons que JavaScript dépend de la casse. Les deux variable suivantes sont
tout à fait différentes Rayon et rayon .

Les caractères accentués comme à, é, è, ç etc ne peuvent être employés dans les noms
de variables mais uniquement dans les chaı̂nes de caractères.

De plus, un nom de variable ne peut être un des mots réservé suivants du langage

17

CHAPITRE 2. VARIABLES ET TYPES DE DONNÉES

JavaScript : abstract, arguments, boolean, break, byte, case catch char class, default do
double, else extends, eval, false final finally float, goto, if, implements, import, in, instan-
ceof, int, interface, let, long, native, new, null, package, private, protected, public, return,
short, static, super, switch, synchronized, this, throw, throws, transient, true, try, var, void,
while, with.

Donner aux variables des noms significatifs. Il vaut beaucoup mieux appeler rayon

une variable qui indique un rayon, que de l’appeler simplement r . Si plusieurs rayons
petitRayon , grandRayon etc numeroCompte

2.1.2 Déclaration de variable

La déclaration de variable peut se faire à l’aide de mots clé var et let (avant il se faisait
par le mots clé var).

– let : permet de déclarer des variables mutables (qui changent de valeurs). Les an-
ciennes version de JavaScript utilisent var.

– const déclare des constantes (variables immuables).
JS n’impose pas l’initialisation des variables au moment de leur création. JS est non

typé. Il n’est pas nécessaire de déclarer le type d’une variable en JS. On peut déclarer une
variable par

Nous pouvons attribuer à une variable une nouvelle valeur qui est le résultat d’une
expression impliquant sa valeur précédente. Par exemple x=x+1; . La variable x prend
alors l’ancienne valeur de x augmentée de 1. Peut s’écrire avec le code x++; ou ++x; . Il
en est de même pour x--; ou --x; pour la décrémentation.

<script>

let x=5;

x++;

document.write(x)

</script>

Le code suivant est correcte y= x++ - 3 retranche 3 de x et puis incrémente x.

<script language="javascript">

document.write(’\u0641’+’\u0627’+’\u0637’+’\u0645’+’\u0629’+’
’);

let x=5;

y=x++ -2;

document.write(y+’
’); //y prend comme valeur 3

document.write(x) //x prend comme valeur 6

</script>

Il vaut mieux éviter cette syntaxe.

18

2.1. VARIABLES

y= ++x - 3 x est d’abord incrémenté puis 3 est retranché.
y+=3 est équivalent à y=y+3 .
Il en est de même pour *=, /=, -=
Les opérateurs + et - ont même priorité. Comme il en est pour / et *. JavaScript les

calcul de gauche à droite.
’abc”+12 JavaScript convertit 12 en chaı̂ne de caractère et puis concatène pour obtenir

abc12
1+2+”abc” donne 3abc
”abc”+1+2 donne abc12
parseInt("123abc") retourne 123
parseInt("abc") parseInt("z123abc") ou retourne NaN pour toute chaine qui ne

commence pas par un nombre.
parseFloat()

isNaN() vérifie si son argument est un nombre.
isNaN("abc") retourne true
isNaN("123") retourne false

L’instruction var

Introduite depuis la version 1.0 de JavaScript .
Dans un script, les variables déclarées avec le mot clef var ou non, en dehors de toute

fonctions, seront toujours globales. C’est à dire, on peut les exploiter partout dans le
document.

Il n’est pas obligatoire de déclarer une variable avec sa valeur initiale. let x; . Dans
ce cas elle a la valeur undefined. Comme nous pouvons le tester avec le code suivant :

<script>

let x;

document.write(x)

</script>

retourne undefined.
Ce code permet de vérifier si une variable à déjà une valeur ou non.
Nous pouvons déclarer une variable et lui affecter une valeur en même temps. L’opérateur

d’affectation étant le symbole =.
Si nous réaffectons une nouvelle valeur à une variable, celle-ci garde la dernière va-

leur et ”oublie” définitivement la première. L’espace mémoire occupé est libéré automa-
tiquement.

19

CHAPITRE 2. VARIABLES ET TYPES DE DONNÉES

L’instruction let

Introduite dans ECMAScript 6 de 2015.
let permet de déclarer et éventuellement d’initialiser une variable dont la portée est

celle du bloc courant. Un bloc en Javascript est délimité par { }.
Dans une fonction (définit par le mot clé function, voir chapitre sur les fonctions), une

variable déclarée par le mot clé var aura une portée limitée à cette seule fonction. On ne
pourra donc pas l’exploiter ailleurs dans le document. Par contre, dans une fonction, si
la variable est déclarée sans le mot var, alors sa portée sera globale.

Il n’est pas obligatoire de déclarer une variable avec sa valeur initiale. let x;

La déclaration sans instruction var est identique à la déclaration avec var.

L’instruction const

Permet de déclarer une constante disponible uniquement en lecture.
Nous ne pouvons déclarer deux constantes avec le même nom dans un même bloc.
let fonctionne avec les portées de bloc et var avec les portées des fonctions :
let x ;

Le symbole d’affectation est le signe =.
Il est possible de définir plusieurs variables en une seule instruction, en les séparant

par virgule :
var x=3, y=6 ;

La déclaration de variable peut se faire de deux façons :
- Explicitement, par le mot clef let.
Par exemple :
var Numero = 1 ; var nom = ”espace” ;
- Implicitement : sans utiliser var. Par exemple :
Numero = 1 ; Prenom = ”Eve” ;
Utiliser var ou non?

2.2 Types de données

La tâche d’un ordinateur est le traitement de données. Ces données peuvent être de
différents types : chaı̂ne de caractères, nombres décimaux ou entiers etc.

Du moment que les données sont différemment traitées, il est important de com-
prendre la notion de type. Il n’a aucun sens de multiplier deux chaı̂nes de caractère,
cependant ce n’est pas le cas de nombres.

20

2.2. TYPES DE DONNÉES

\b touche de suppression, \f formulaire plein
\n nouvelle ligne, \r appui sur la touche ENTREE
\t tabulation, \” guillemets doubles
\’ guillemets simples, antianti caractère antislash
\xNN caractère de code NN dans Latin-1 xNNN caractère de code NN en Unicode

TABLE 2.1 – Caractères spéciaux en JavaScript

JavaScript est un langage faiblement typé. Contrairement à d’autres langages, no-
tamment C, nous n’avons pas besoin de déclarer le type d’une variable pour l’utiliser.
quand nous écrivons let x=5; alors x est considéré comme nombre. De même quand
nous déclarons let C=’Bonjour’; alors C est considéré comme chaı̂ne de caractère.

Toute valeur en JavaScript, est de l’un des types suivants :

Le type Number

nombres entiers ou décimaux. Par exemple 21 ou 3.14 (le séparateur décimal étant
le point). JavaScript ne fait pas la distinction entre entier et décimaux. Il est capable de
manipuler les nombres positifs ou négatifs entre −253 et +253

Le type String

ou chaı̂ne de caractère : c’est une suite de caractères à placer toujours entre ’ ’ ou ” ”,
(sinon cette chaı̂ne de caractère sera considérée comme une variable). Nous ne pouvons
inclure ” dans ” ou ”” dans ””. Le ’ dans une chaı̂ne de caractère doit être précédé d’un
\ pour avertir l’interpréteur que ’ n’est pas la fermeture. C=’aujourd’hui’ est incorrecte,
par contre C=’aujourd’hui’ ou C="aujourd’hui" est correcte.

Pour inclure ” dans ”” il suffit de précéder les ”” internes par \.
C=”William Shakespeare a dit T̈o be, or not to be, that is the question”̈.
Le tableau 2.2 liste d’autres caractère spéciaux en JavaScript .
Dans le tableau 2.2, NNest un nombre hexadécimal qui représente un caractère de l’en-

semble Latin-1 appelé aussi ISO/CEI 8859-1 ou simplement ISO 8859-1. Voir l’ensemble
complet 1 Par exemple :

document.write("\x41") produit A
document.write("\xE6") produit æ
document.write("\xA9") produit ©

1. https ://fr.wikipedia.org/wiki/ISO/CEI 8859-1

21

CHAPITRE 2. VARIABLES ET TYPES DE DONNÉES

De même nous pouvons écrire des caractères Unicode en utilisant leur code sous la
forme \uNNNN. L’Unicode 2 code

document.write(’\u0641’+’\u0627’+’\u0637’+’\u0645’+’\u0629’) pro-
duit

Le type Boolean

type dont les valeurs possibles sont true et false. Un traitement se fait souvent en
fonction d’une condition, si celle ci est vraie voilà ce qu’il faut faire, sinon faire autre
chose.

Le type Null

indique l’absence de valeur : aucune valeur pour l’objet n’est présente

Le type Undefined

l’unique valeur possible est undefined. C’est le type d’une variable déclarée avant
qu’une valeur ne lui soit affectée.

Object :

Symbol :

L’opérateur typeof permet de déterminer le type d’une variable ou d’une expression.

Syntaxe : typeof(x) ou typeof x

let i = 1;

typeof i; //retourne number

let titre="JavaScript est génial";

typeof titre; //retourne string

var choix = true;

typeof choix; //retourne boole

var V;

alert(" type de V : "+(typeof V)); // retourne undefined

2.2.1 Conversion de types

.

2. https ://unicode-table.com/fr/

22

2.3. CONSTANTES

Les conversions possibles sont de types primitifs en chaı̂nes de caractères et de chaı̂nes
de caractères en nombres entiers ou réels. Il est aussi possible de conversion entre différentes
bases de système de numération.

Les types primitifs correspondent à des pseudo- objets. Ils peuvent posséder des
méthodes,

var b = true;

alert(" type de b : "+(typeof b));

var v = b.toString();

alert(" type de v : "+(typeof v));

Pour les nombres, la méthode toString peut être utilisée avec un paramètre pour
spécifier la base souhaité. Par défaut, la base décimale est utilisée. Il est possible de
spécifier, la base binaire par 2, la base octale par 8, la base hexadécimale par 16 ou n’im-
porte qu’elle autre base.

var N = 5;

var v1 = N.toString();

var v2 = N.toString(2); // 101

Les fonctions parseInt et parseFloat convertissent les chaı̂nes de caractères représentant
des nombres en nombres entiers ou décimaux. ParseInt peux prendre 2 arguments : la
chaine à convertir et sa base.

var v = parseInt("11001"); //retourne 11001

var v = parseInt("11001",2); //retourne 25

Les opérateurs + et - permettent de convertir une chaı̂ne de caractères en nombre de
la même façon que la méthode parseInt . Le - change en plus le signe du nombre.

2.3 Constantes

Une constante est une variable qui ne change pas de valeur. Pour définir une constante,
il suffit d’utiliser un nom de constante et de lui affecter une valeur au moyen de l’opérateur
d’affectation =. Par exemple pi=3.14 ; ou const pi=3.14; .

Il existe des constantes prédéfinies telles que dans la Table 2.2 :
Toute valeur différente de null, NaN, undefined, 0 et la chaı̂ne de caractères vide est

évaluée par défaut par JavaScript comme true. Var x=3 ; if(x) ?

23

CHAPITRE 2. VARIABLES ET TYPES DE DONNÉES

Constante Explication
undefined la variable qui prend cette valeur a été déclarée mais n’a pas

été initialisée.
null la variable n’existe pas.
Infinity représente l’infini positif. Permet notamment de vérifier si il y

a une division par zéro.
NaN équivaut à la définition de l’IEEE de Not a Number .

TABLE 2.2 – Constantes prédéfinies de JS

Signe Nom Signification Exemple Résultat
+ plus addition x + 3 14
- moins soustraction x - 3 8
* multiplié par multiplication x*2 22
/ divisé par division x /2 5.5
% modulo reste de la division par x%7 4
= a la valeur affectation x=5 5

TABLE 2.3 – Symboles arithmétique en JavaScript

2.4 Opérateurs arithmétiques, booléens et de comparaison

Pour développer des programmes, en plus des variables à manipuler, nous disposons
de nombreux opérateurs pour les traiter.

2.4.1 Les opérateurs arithmétiques

JavaScript et comme tout langage de programmation permet de faire tous les calculs
arithmétiques. JavaScript utilise les symboles arithmétiques classiques. + pour l’addition,
* pour la multiplication, / pour la division, ** pour la puissance, % pour le modulo,

Voir Tableau 2.4.1
Dans les exemples, la valeur initiale de x sera toujours égale à 11.

2.4.2 Les opérateurs de comparaison

JavaScript utilise les opérateurs suivants pour la comparaison de valeurs. Ces opérateurs
sont utilisés dans les structures conditionnelles que nous allons voir plus tard.

Pour les exemple, on suppose x=11.

24

2.4. OPÉRATEURS ARITHMÉTIQUES, BOOLÉENS ET DE COMPARAISON

Signe Nom Exemple Résultat
== comparaison de valeurs x==11 true
=== comparaison de valeur et type x==’11’ false
< inférieur x<11 false
<= inférieur ou égal x<=11 true
> supérieur x>11 false
=< supérieur ou égal x>=11 true
!= différent x!=11 false
!== différence de valeur et type x!==’11’ true

TABLE 2.4 – Symbole de comparaaison en JavaScript

Signe Description Exemple Signification Résultat
+= plus égal x += y x = x + y 16
-= moins égal x -= y x = x - y 6
*= multiplié égal x *= y x = x * y 55
/= divisé égal x /= y x = x / y 2.2

TABLE 2.5 – Symboles d’incrémentation en JavaScript

lry b=2>5;

alert(" type de b : "+(typeof b)); \\ retourne boolean

Important. Il ne faut pas confondre le = et le == (deux signes =). Le = est un opérateur
d’affectation de valeur tandis que le == est un opérateur de comparaison. Cette confusion
est une source classique d’erreur de programmation.

2.4.3 Les opérateurs associatifs

On appelle ainsi les opérateurs qui réalisent un calcul dans lequel une variable inter-
vient des deux côtés du signe = (ce sont donc en quelque sorte également des opérateurs
d’attribution). Dans les exemples suivants x vaut toujours 11 et y aura comme valeur 5.

2.4.4 Les opérateurs d’incrémentation

Ces opérateurs vont augmenter ou diminuer la valeur de la variable d’une unité. Ce
qui sera fort utile, par exemple, pour mettre en place des boucles. Dans les exemples x
vaut 3.

25

CHAPITRE 2. VARIABLES ET TYPES DE DONNÉES

Signe Description Exemple Signification Résultat
x++ incrémentation (x++ est le

même que x=x+1)
y = x++ euis plus 1 4

x- - décrémentation (x- - est le
même que x=x-1)

y= x- - 3 puis moins 1 2

TABLE 2.6 – Symboles d’incrémentation en JavaScript

Signe Nom Exemple Signification
&& et (condition1) && (condition2) est vrai si les 2 conditions sont

vraies, sinon fausse
—— ou (condition1) —— (condi-

tion2)
est vrai si au moins une des 2 condi-
tions est vraie, sinon fausse

!() non
logique !(condition)

donne vrai si ’condition’ est fausse,
sinon fausse

TABLE 2.7 – Symboles logiques en JavaScript

En incrémentant ou décrémentant avec le double signe (++ ou - -) avant le nom de
la variable, l’opération d’incrémentation ou de décrémentation sera prioritaire sur l’assi-
gnation. Par contre, si le double signe est après le nom de la variable, l’assignation sera
prioritaire sur l’incrémentation ou la décrémentation.

2.4.5 Les opérateurs logiques

Aussi appelés opérateurs booléens, ses opérateurs servent à composer deux ou plu-
sieurs conditions.

2.4.6 La priorité des opérateurs Javascript

Les opérateurs s’effectuent dans l’ordre suivant de priorité (du degré de priorité le
plus faible ou degré de priorité le plus élevé). Dans le cas d’opérateurs de priorité égale,
de gauche à droite.

26

2.4. OPÉRATEURS ARITHMÉTIQUES, BOOLÉENS ET DE COMPARAISON

Méthode Description
isArray Détermine si le paramètre est un tableau.
isBoolean Détermine si le paramètre est un booléen.
isEmpty Détermine si un tableau est vide.
isFinite Détermine si le paramètre correspond à un nombre fini.
isFunction Détermine si le paramètre est une fonction.
isNaN Détermine si la valeur du paramètre correspond à NaN (Not a Num-

ber).
isNull Détermine si le paramètre est null.
isNumber : Détermine si le paramètre est un nombre.
isObject Détermine si le paramètre est un objet.
isString Détermine si le paramètre est une chaı̂ne de caractères.
isUndefined Détermine si le paramètre est indéfini, c’est-à-dire une référence non

initialisée.

TABLE 2.8 – Constantes prédéfinies

Opération Opérateur
, virgule ou séparateur de liste
= += -= *= /= %= affectation
? : opérateur conditionnel
—— ou logique
&& et logique
==!= égalité
¡ ¡= ¿= ¿ relationnel
+ - addition soustraction
* / multiplier diviser
! - ++ – unaire
() parenthèses

2.4.7 Opérateur sur les chaı̂nes de caractères

L’opérateur + permet aussi de concaténer deux chaı̂nes de caractères. Par exemple
”bon”+”jour” donne ”bonjour”.

JavaScript offre un ensemble de méthodes permettant de détecter le type et la validité
de la variable passée en paramètre. Ces méthodes commence par is.

27

CHAPITRE 2. VARIABLES ET TYPES DE DONNÉES

Les méthodes escape et unescape offrent respectivement la possibilité d’encoder et de
décoder des chaı̂nes afin qu’elles puissent être utilisées dans des pages HTML.

2.5 Structures conditionnelles

La notion de condition existe dans tous les langages de programmation.
Seul le premier if et le bloc qui le qui sont nécessaires.

2.5.1 La structure if

if (condition1)

{ code qui sera interpété si la condition1 est vraie }

else if (condition2) //optionnel

{ code qui sera interpété si la condition2 est vraie }

// autant de else if que nécéssaire

else //optionnel

{ code qui sera interpété si toutes

les conditions ci-dessus sont fausses }

La condition doit être toujours entourée de parenthèses (). Le code qui la suit entre
accolades est exécute si la condition est vraie

Les accolades { } ne sont obligatoires qu’en cas d’instructions multiples.
Il est possible d’utiliser autant de blocs else if que nécessaire.
La séquence else (optionnelle) est interprétée si toutes les ’condition’ sont fausses.
Exemple.

<script type="text/JavaScript">

var n=prompt(’Saisir votre âge’);

if (n>=0 && n<=14){alert(’Vous êtes un enfant’)}

else if (n>=15 && n<=24){alert(’Vous êtes un adolescent’)}

else if (n>=25 && n<=64){alert(’Vous êtes un adulte’)}

else if (n>=65 && n<=120){alert(’Vous êtes un aı̂nés’)}

else {alert(’âge érroné’)}

</script>

2.5.2 Une autre structure conditionnelle

var variable=(condition) ? Valeur1 : Valeur2 ;

Si ’condition’ est vraie, alors valeur1 est affectée à ’variable’, sinon c’est valeur2 qui lui
est affectée.

28

2.5. STRUCTURES CONDITIONNELLES

Par exemple :

<script type="text/JavaScript">

x=(x>=0)?x:(-x) ;

tranche=(age>18) ? ’majeur’ :’mineur’ ;

salut=(heure<=18)?"Bonjour":"Bonsoir";

</script>

2.5.3 switch

La syntaxe est

switch(variable)

{

case valeur1 : instructions à faire si variable=valeur1 ; break ;

case valeur2 : instructions à faire si variable=valeur2 ; break ;

...

default : instructions à faire, par défaut, si

variable est différente de valeur1, valeur2 etc ;

}

switch ne peut tester que l’égalité de valeurs et non pas l’inégalité. Variable doit être
une valeur et non une expression à évaluer.

Le contenu des case (valeur1, etc) doit être un élément déjà évalué. On ne peut y
insérer des expressions. Pour éviter de tester tous les cas, l’utilisation de break permet
de sortir du switch dès l’action terminée. Le default permet d’effectuer une action si la
variable testée ne coı̈ncide avec aucune des valeurs proposées dans les case précédent.

Il faut préciser un break pour chaque case afin de sortir du switch, sinon le switch va
lire et exécuter le code contenu dans chaque case à la suite.

Exemple :

<script type="text/JavaScript">

var n=parseFloat(prompt(’Saisir un nombre’));

switch (n){

case 1: alert(’Janvier’); break;

case 2: alert(’Février’); break;

case 3: alert(’Mars’); break;

...

default :alert(’Saisie érronée’)

}

</script>

29

CHAPITRE 2. VARIABLES ET TYPES DE DONNÉES

2.6 Structures itératives

Cette notion appelée aussi boucles existe dans tous les langages de programmation.
La résolution de plusieurs problèmes se ramène à un même traitement sur différentes
valeurs.

Les structures itératives ou boucles permettent d’exécuter un bloc de code un certain
nombre de fois, tant qu’une certaine condition est vraie. La condition donnée doit être
fausse à un moment donné, sinon la boucle devient infinie ! JavaScript définit quatre types
de boucles, for , for...in , while et do...while .

2.6.1 La boucle for

est utilisé quand nous connaissons à l’avance le nombre d’itérations

for (départ_compteur; condition_continuation; incrémentation)

{

code à interpréter ;

}

Exemple :

<script type="text/javascript">

document.write("voici les multiples de :")

for (var k=1; k<=10; k++)

{

document.write(7*k+"
");

};

</script>

2.6.2 La boucle for in

est utilisé quand on parcourt un ensemble d’objet

for (variable in object)

{ code à interpréter ; }

<script type="text/javascript">

var personne={Nom:"Ali", Prénom:"Mohammed", age:25};

for (x in personne){

document.write(personne[x] + " ");

}

</script>

30

2.6. STRUCTURES ITÉRATIVES

2.6.3 while

est utilisé quand

while (condition)

{

code à exécuter à chaque passage ;

}

<script type="text/javascript">

k=1;

while (k<=10)

{document.write(7*k+’ ’);

k++;

};

</script>

2.6.4 do while

est utilisé quand
La boucle do – while est intéressante si besoin pour une raison ou pour une autre

d’effectuer au moins un passage dans une boucle pour faire fonctionner un script. L’ini-
tialisation est exécutée avant tout passage dans la boucle for, tandis que l’incrémentation
est exécutée à la fin de chaque passage dans la boucle for.

do

{

code qui sera interprété à chaque itération

}

while (condition);

JavaScript définit les mots-clé break et continue afin de modifier l’exécution des boucles.
Le premier offre la possibilité d’arrêter l’itération d’une boucle et de sortir de son bloc
d’exécution, et le second de forcer le passage à l’itération suivante. Les traitements sui-
vants de l’itération courante ne sont alors pas effectués.

break : permet d’interrompre prématurément une boucle for ou while .
Continue : permet de sauter une instruction dans une boucle for ou while et de conti-

nuer ensuite le bouclage (sans sortir de celui-ci comme le fait break).
Exemple

<script type="text/JavaScript">

var res = ’’;

31

CHAPITRE 2. VARIABLES ET TYPES DE DONNÉES

for (i = 0; i < 10; i++) {

if (i >= 3 && i<=5) { continue; }

text = res + i+’ ’;}

document.write(res)

</script>

<script type="text/JavaScript">

var i = 0;

while (i < 10) { if (i == 5) {break;}

i = i + 1;

document.write(i)}

</script>

2.7 Exercices

Exercice 13.

Exercice 14.

Exercice 15.

32

3
Les fonctions

La notion de fonction existe dans tous les langages de programmation. Une fonction
est un sous-programme qui porte un nom et qui peut être utilisé plusieurs fois, par simple
appel de son nom. Le nom de fonction suit les mêmes règles que celles de variables.

Avant de l’appeler, une fonction doit être définie. Une fonction peut être placée n’im-
porte où dans un document HTML; mais il est conseillé de la placer entre ¡head¿ ...
¡/head¿. Les arguments de fonctions doivent être indépendants du contexte d’un do-
cument HTML. Pour rappel, Javascript est sensible à la casse. Ainsi, fonct() et Fonc() sont
différentes. En outre, les noms de fonctions dans un même script doivent être différents
par exemple.

Les instructions composant la définition d’une fonction ne sont interprétées que jus-
qu’à l’appel de la fonction.

En Javascript, il existe deux types de fonctions :

- les fonctions prédéfinies dans le langage Javascript, comme parseInt(), eval() etc. Les
fonctions membres appelées aussi ”méthodes”. Chacune d’entre elles est associées à un
objet de JavaScript . Par exemple la méthode alert() de l’objet window, document.write
de document etc.

- les fonctions écrites par le programmeur.

33

CHAPITRE 3. LES FONCTIONS

3.1 Programmation de fonction

Pour définir une fonction, on utilise le mot réservé function. La syntaxe de définition
d’une fonction est la suivante.

function maFonction(argument1, argument2, ...) {

... instructions ... ;

return resultat

}

La mention d’arguments est facultative dans la définition d’une fonction. En cas d’uti-
lisation d’arguments, ils sont séparés par la virgule. Les parenthèses qui suivent le nom
de fonction sont obligatoires, même en cas d’absence d’arguments. Ces parenthèses per-
mettent à l’interpréteur JavaScript de distinguer les fonctions des variables. La définition
d’une fonction est groupée dans un bloc entre accolades { }.

Pour renvoyer un résultat, il suffit d’écrire le mot clé return suivi de l’expression à
renvoyer, sans parenthèses. L’instruction return est facultative et on peut utiliser plusieurs
return dans une même fonction.

Une fois une fonction définie, on pourra l’appeler partout dans la suite par son nom.
Une fonction peut appeler une autre fonction déjà définie.

Rappelons que le code JavaScript peut être placé comme valeur d’attribut d’événement
onClick, onMouseOver, onFocus etc.

¡balise onEvent=” code JavaScript ”¿ ... ¡/balise¿
Quand ce code JavaScript est long, on l’écrit sous forme d’une fonction nommée ma-

Fonction par exemple et on l’appelle comme il suit :
¡balise onEvent=”maFonction()”¿ ... ¡/balise¿

<script type="text/javascript">

function fac(n){

if (n < 2) {

return 1;

} else {

return n * fac(n-1);

}

}

</script>

On pourra par la suite appeler cette fonction

<script type="text/javascript">

var N= fac(7);

document.write(N);

34

3.1. PROGRAMMATION DE FONCTION

</script>

Les arguments passés à une fonction constituent automatiquement un tableau nommé
arguments.

Par exemple : une fonction qui fait la somme d’un nombre indéterminé de nombres.

<script>

function somme() {

var s = 0;

for (i = 0; i < arguments.length; i++) {

s += arguments[i];

}

return s;

}

x = somme(2,4,6,8,10);

y = somme(1,3,5);

document.write(x);

document.write(y);

</script>

Écrire Une fonction qui affiche ses arguments.

<script type="text/javascript">

function F()

{for(i=0;i<arguments.length;i++)

document.write(arguments[i]);

}

F("a","b", 123); // retourne ab123

</script>

Variable Locale. Une variable déclarée dans une fonction en utilisant var, n’est recon-
nue que à l’intérieur cette fonction. Cette variable n’est pas reconnue en dehors de sa
fonction. On dit que cette variable est locale. Le navigateur efface de la mémoire toute
variable locale à une fonction dès que cette fonction est utilisée.

Deux fonctions différentes peuvent utiliser un même nom de variable.

Variable Globale. Une variable globale peut être déclarée n’importe où dans un script
en-dehors de toute fonction. On dit qu’elle a une portée globale. Une variable globale
est stockée en mémoire, ce qui veut dire qu’elle prend plus de mémoire qu’une variable
locale. C’est pourquoi, il faut privilégier l’utilisation des variables locales autant que pos-
sible.

35

CHAPITRE 3. LES FONCTIONS

3.2 Fonctions de haut niveau prédéfinies

Les fonctions de haut niveau ne sont associées à aucun objet particulier.

Fonction Signification
encodeURI(string) Encode l’URI de telle façon que tous les caractères spéciaux sont trans-

formés en séquences de signes ASCII.
decodeURI(string) Décode une URI qui a été encodé avec encodeURI.
eval() Evalue et exécute le JS contenu dans une chaine de caractère. Var x=7 ;

chaine=”x= x+ 3” ; eval(chaine) ;
IsFinite() Retourne true si la valeur passée en paramètre fait partie de la plage de

nombre que peut traiter JavaScript, sinon retourne false.
isNaN() Retourne true si la valeur passés en paramètre est un nombre, sinon

retourne false.
Number() convertit un objet en un nombre.
ParseFloat() convertit une chaı̂ne de caractères en valeur réelle flottante
parseInt() convertit une chaı̂ne de caractères en valeur entière dans la base

spécifiée
String() convertit un objet en une chaı̂ne.

TABLE 3.1 – Fonctions de haut niveau prédéfinies en JavaScript

La fonction eval() permet d’évaluer une chaı̂ne de caractère sous forme de valeur
numérique. On peut stocker dans une chaı̂ne des opérations numériques, des opérations
de comparaison, des instructions et même des fonctions.

Par exemple C=’3 + 7’ ; eval(C) donne comme résultat 10.
Voir les autres fonctions dans le Tableau 3.1. Certaines fonctions comme escape(),

unescape() sont devenues obsolètes.

3.3 Exercices

36

4
Objets et tableaux

Dans la Figure 7.3 du chapitre précédant, nous avons vu tous les objets prédéfinis de
JavaScript . Dans ce chapitre, nous allons voir les propriétés et les méthodes importantes
de chacun de ces objets.

4.1 L’objet Array

4.1.1 Tableaux

Array veut dire tableau en français. Un tableau est une suite finie de variables aux-
quels on peut accéder par indice (au lieu de leur accéder par leur nom). L’indexation des
tableaux débute à 0. Cette notion de tableau existe dans tous les langages de program-
mation.

En JavaScript l’objet Array est utilisé pour créer des tableaux. La syntaxe est
1) Si on connaı̂t le contenu du tableau

var monTableau = new Array(E0, E1, ..., En);

de façon équivalente, on peut aussi déclarer un tableau avec la syntaxe suivante :

var monTableau=[E0, E1, ..., En];

37

CHAPITRE 4. OBJETS ET TABLEAUX

on a monTableau[0]=E0, monTableau[1]=E1, etc

<script type="text/javascript">

T=new Array(’a’,’b’,3,5);

document.write(T[0],T[2]) //retourne a 3

T[0]=’A’; // écrase l’ancienne valeur et la remplace par A

document.write(T[0]) //retourne A

</script>

2) on connaı̂t le nombre des éléments du tableau.

Tableau = new Array(nombre);// ou Tableau=[nombre]

pour compléter ce tableau on fait des affectations Tableau[0]=V0, Tableau[1]=V1, ...

<script type="text/javascript">

T=new Array(3);

T[0]=’pomme’; T[1]=’banane’;T[2]=’poire’;

U=[3];

U[0]=’fraise’; U[1]=’orange’; U[2]=’mangue’;

document.write(T[0],T[2]) //retourne pomme poire

document.write(U[0],U[2]) //retourne fraise mangue

</script>

3) Si on ne connaı̂t pas le nombre des éléments du tableau à l’avance.

Tableau = new Array(); ou Tableau=[]

pour compléter ce tableau on fait des affectations : Tableau[0]=E0, Tableau[1]=E1, ...

<script type="text/javascript">

T=new Array();

T[0]=’pomme’; T[2]=’poire’;

U=[];

U[0]=’fraise’; U[1]=’orange’; U[2]=’mangue’;

document.write(T[0],T[1]) //retourne pomme undefined

document.write(U[0],U[2]) //retourne fraise mangue

</script>

On peut parcourir les tableaux en utilisant une boucle. La propriété length retourne
la longueur de tableau.

<script language="javascript">

var T = new Array();

T[0] = "orange";

T[1] = "pomme";

T[2] = "kiwi";

38

4.2. TABLEAUX PRÉDÉFINIS DE JAVASCRIPT

for (i=0;i<T.length;i++){document.write(T[i] + "
");}

</script>

4.1.2 Tableaux associatifs

Les tableaux associatifs sont des tableaux indexés par des chaı̂nes de caractères et non
pas par des indices numériques.

var T = new Array(); T[’Clé1’] = ’Val1’; T[’Clé2’] = ’Val2 ’; ...

ou en utilisant les parenthèses

var T = {"clé1" :"val1" , "clé2" :"val2" , ... };

<script type="text/javascript">

var T = new Array();

T[’Clé1’] = ’Val1’;

T[’Clé2’] = ’Val2 ’;

for(x in T){document.write(x + ’ : ’ + T[x] + ’ ’+’
’)};

var Notes = {’Ali’:[12,13,10,16,13], ’Med’:[15,10,8,12,14],

’Saloua’:[10,12,15,4,18]};

document.write(Notes[’Ali’],’
’); // retourne 12,13,10,16,13

document.write(Notes[’Ali’][3]); // retourne 16

</script>

4.2 Tableaux prédéfinis de JavaScript

4.2.1 Objet prédéfini images[]

images : est un tableau contenant toutes les images de document HTML. Il a comme
propriétés src, width, height, id, ...

document.images[i] indique la (i+1)eme image du document en cours.
document.images.length : retourne le nombre d’image dans le document HTML en

cours.
document.images[i].src : contient le le chemin et nom de fichier de la (i+1)eme image

dans le document HTML en cours.
Au lieu d’utiliser les indices pour le tableau images on peut utiliser l’attribut name de

la balise ¡img¿ et utiliser document.images[’nomImage’].

39

CHAPITRE 4. OBJETS ET TABLEAUX

On peut aussi utiliser l’attribut id pour la balise ¡img¿ et la méthode getElement-
ById() de document : document.getElementById(’nomId’) pour indiquer l’image ayant
l’Id=’nomId’.

<script type="text/javascript">

p=document.getElementById(’abc’).src

document.write(p); //retourne img2.jpeg

</script>

Propriété de l’objet images[]

alt contient le texte alternatif de l’image.

border Contient la valeur de border.

complete Contient un indicateur de fin de chargement de l’image. Vaut true si l’image
est complètement chargée et false sinon.

fileSize Contient la taille en octets de l’image (ne fonctionne pas avec tous les naviga-
teurs).

height contient la valeur définie par le paramètre height de la balise ¡img¿ en son
absence indique la hauteur réelle de l’image.

id contient la valeur définie par le paramètre id de la balise ¡img¿. Cet identifiant
s’utilise avec la méthode getElementById() de document. Attention de ne pas confondre
id avec name.

name contient la valeur définie par le paramètre name de la balise ¡img¿.

src La propriété src contient le chemin et le nom de fichier de l’image.

width contient la valeur définie par le paramètre width de la balise ¡img¿ en son ab-
sence indique la largeur réelle de l’image.

4.2.2 L’objet prédéfini links[]

links : est un tableau contenant tous les liens du document HTML en cours. Il a comme
propriétés href, target, id, ...

document.links[i] indique le (i+1)eme lien du document en cours.

document.links.length : retourne le nombre de liens dans le document HTML en
cours.

document.links[i].href : contient l’URL du (i+1)eme lien dans le document HTML en
cours.

40

4.2. TABLEAUX PRÉDÉFINIS DE JAVASCRIPT

Au lieu d’utiliser les indices pour le tableau links on peut utiliser l’attribut name de
la balise ¡a¿ ...¡/a¿ et utiliser document.links[’nomLien’]

On peut aussi utiliser l’attribut id pour la balise ¡a¿ ...¡/a¿ et la méthode getElement-
ById() de document : document.getElementById(’nomId’) pour indiquer le lien ayant
l’Id=’nomId’.

 Google

 Yahoo

<script type="text/javascript">

document.write(’URL du 1er lien est : ’,document.links[0].href,’
’);

document.write(’La cible du 2e lien : ’,document.links[1].target,’
’);

document.links[0].href=’http://www.youtube.com’; // modifie URL

document.getElementById(’abc’).textContent=’Youtube’;

</script>

4.2.3 L’objet prédéfinis forms[]

document.forms[i] indique le (i+1)eme formulaire du document en cours.

Au lieu d’utiliser les indices pour le tableau forms on peut utiliser l’attribut name de
¡form¿ ...¡/form¿ et utiliser document.forms[’nomFormulaire’] pour indiquer le formu-
laire nommé ’nomFormulaire’. On peut aussi utiliser l’attribut id=”monId” dans la balise
¡form¿ et document.getElementById(’monId’) pour repérer le formulaire dont l’Id=”monId”.

document.forms.length : retourne le nombre de formulaire dans le document HTML.

voir exemple ci-dessous.

Propriétés de l’objet forms[]

action Contient l’action définie pour un formulaire document.forms[X].action ; (action
utile pour PHP).

elements Tableau de tous les élément d’un formulaire.

encoding Contient le type de ” ENCTYPE” des données du formulaire. document.forms[X].encoding.

length Nombre de formulaires que contient le document. document.forms.length

method Contient la ”méthode de transmission des données” (get/post) du formulaire

document.forms[X].method ; X est un indice ou nom de formulaire donné par l’attri-
but name de la balise ¡form¿.

name Contient le nom du formulaire document.forms[X].name

target Fenêtre cible du formulaire. document.forms[X].target

41

CHAPITRE 4. OBJETS ET TABLEAUX

Méthodes de l’objet forms[]

reset() Réinitialise un formulaire : document.forms[X].reset()
submit() Soumet un formulaire : document.forms[X].submit()

4.2.4 L’objet prédéfinis elements[]

elements : est un tableau contenant tous les éléments d’un formulaire. Il s’agit de tous
les types dans ¡input¿, ¡select¿, ¡textarea¿, etc

Au lieu d’utiliser les indices pour le tableau elements on peut utiliser l’attribut name
de ¡input¿ et utiliser document.forms[i].elements[’nomElement’]. On peut aussi utiliser
l’attribut id avec document.getElementById() pour repérer l’élément dont l’id indiqué.

document.forms[”nomForm”].elements[’nomElement’].value ; valeur de l’élément nommé
’nomElement’ du formulaire nommé ”nomForm”.

On peu mixer la désignation par nom et par indice.

<form name=’ff’>

<input type=’text’ name="cc">+

<input type=’text’ id="abc">=

<input type=’text’ onClick="

a=parseFloat(document.forms[’ff’].elements[0].value);

b=parseFloat(document.getElementById(’abc’).value);

document.forms[0].elements[2].value=a+b;">

</form>

4.2.5 Localisation de balise

En plus des attributs name et id, JavaScript permet de localiser des balises d’après
leurs noms ou la valeur de leur attribut class. Nous allons voir :

getElementsByTagName

getElementsByTagName(nomBalise) : renvoie tous les éléments du document dont le
nom de balise est nomBalise. (remarquer le s dans getElementsByTagName).

<p> Paragraphe Paragraphe Paragraphe </p>

<p> texte texte texte </p>

<script type="text/javascript">

var c=document.getElementsByTagName("p");

document.write(c[1].innerHTML); // retourne : texte texte texte

</script>

42

4.3. EXERCICES

getElementsByClassName

getElementsByClassName(maClasse) renvoie tous les éléments du document ayant
un attribut HTML class dont la valeur est maClasse.

<div class=’abc’> Paragraphe Paragraphe </div>

<div class=’xyz’> texte texte texte </div>

<div class=’abc’> phrase phrase phrase </div>

<script type="text/javascript">

var c=document.getElementsByClassName("abc");

document.write(c[1].innerHTML); // retourne : phrase phrase phrase

</script>

4.3 Exercices

43

CHAPITRE 4. OBJETS ET TABLEAUX

44

5
Manipulation du DOM

5.1 Qu’est-ce que le DOM?

DOM (Document Object Model ou modèle objet de document en français) est stan-
dard développé par W3C.

Le modèle DOM consiste à représenter, de manière orienté objet, le contenu d’un do-
cument HTML comme structure arborescente composée de nœuds. Est considéré comme
nœud dans ce modèle, le document lui même, les éléments, le contenu textuel d’un
élément, et les commentaires. Chaque nœud est un objet pour lequel il existe des pro-
priétés et des méthodes permettant de lire ou modifier dynamiquement la structure, le
contenu et le style de ce document, via un langage de programmation comme JavaScript,
PhP 5, Java, Python, Perl, ou autres.

Ces langages permettent la manipulation de document HTML à travers leur représentation
DOM. Les noms des interfaces, classes, méthodes et propriétés du DOM sont indépendantes
des langages.

<h1>DOM est génial ! </h1> cet élément créé deux nœuds : le nœud élément h1 et le
nœud texte.

DOM est un standard qui définit :
– Les éléments HTML en tant qu’objets ;

45

CHAPITRE 5. MANIPULATION DU DOM

FIGURE 5.1 – Hiérarchie DOM

– Les propriétés de tous les éléments HTML;
– Les méthodes pour accéder à tous les éléments HTML;
– Les événements pour tous les éléments HTML;

Avec DOM, JavaScript peut :
– accéder et modifier tous les éléments, attributs et styles CSS d’un document HTML.
– supprimer les éléments, et les attributs existant d’un document HTML ou en ajouter de
nouveau.
– réagir à tous les événements d’un document HTML ou en créer de nouveaux.
C’est ce que nous allons apprendre à faire dans ce chapitre.

Pour rappel : Une propriété est une valeur qu’on peut obtenir ou définir. Alors qu’ne
méthode est une action qu’on peut effectuer (comme ajouter ou supprimer un élément
HTML).

5.2 Sélection des nœuds du DOM

Une fois qu’un nœud est sélectionné, par les méthodes vues dans la section précédente,
un certain nombre de propriétés permettent de parcourir l’arborescence DOM à partir du
nœud sélectionné.

Les propriétés qui suivent prennent également en compte les nœuds de texte et de
commentaires, pas seulement les nœuds d’éléments.

46

5.2. SÉLECTION DES NŒUDS DU DOM

Rappelons qu’un) nœud dans le modèle DOM, est l’un des objet suivants : le docu-
ment lui même, les éléments, le contenu textuel d’un élément, et les commentaires.

Pour manipuler les nœuds d’un document HTML il faut savoir les sélectionner. La
sélection d’un élément peut se faire :

– par son attribut id en utilisant la méthode getElementById() qui sélectionne l’unique
élément du document dont l’id est fourni en paramètre.

– par son attribut class en utilisant la méthode getElementsByClassName() qui re-
tourne tous les éléments dont la classe fournie en paramètre, sous forme d’un tableau.

– par le nom de l’élément en utilisant la méthode getElementsByTagName() qui sélectionne
tous les éléments dont le nom est fournie en paramètre, sous forme d’un tableau.

– par un sélecteur CSS en utilisant la méthode querySelectorAll() sélectionne les éléments
retenus par le sélecteur CSS fourni en paramètre, sous forme d’un tableau. querySelector
est similaire mais ne fournit que le premier élément.

Exemples de sélecteur CSS
sélecteur de classe : document.querySelector(”.nomClasse”) ;
sélecteur d’élément : document.querySelector(”div”) ;
sélecteur id : document.querySelector(”#main”) ;
Propriétés
La propriété innerHTML ou textContent est utile pour récupérer ou remplacer le contenu

des éléments HTML.
element.attribute = NouvelleValeur : Changer la valeur d’attribut d’un élément HTML
Sélection d’autres nœuds :
Le modèle DOM presente un document HTML comme une arborescence. Chaque

nœud est un objet et possède un ensemble de propriétés :
– nodeName : renvoie le nom de l’élément du nœud (ou #text pour les nœuds de

texte)
– nodeType : type du nœud.
– nodeValue : renvoie la valeur d’un nœud
– parentNode : permet d’accéder au nœud parent.
– childNodes : retourne tous les nœuds enfant (sous forme de tableau) – fitstChild :

permet d’accéder au premier nœud enfant ;
– lastChild : permet d’accéder au dernier nœud enfant ;
– previouSibling : nœud précédent au même niveau (à gauche).
– nextSibling : nœud suivant au même niveau (à droite) ;
Le Tableau 5.1 contient une liste de toutes les valeurs possibles de nodeType avec leur

significations.

47

CHAPITRE 5. MANIPULATION DU DOM

Type de nœud Description
1 un nœud élément (comme p ou div)
2 Attribut
3 Texte (espaces compris)
8 un nœud Commentaire HTML
9 nœud Document lui même
10 le nœud doctype
11 Fragment

TABLE 5.1 – Signification de type de nœuds retournée parnodeType

La propriété childNodes renvoie un objet NodeList qui est la liste de nœuds enfants
d’un élément, en lecture seule. childNodes[0] est identique à firstChild

childNodes renvoie les nœuds enfants : nœuds d’élément, nœuds de texte et nœuds
de commentaire. Les espaces entre les éléments sont également des nœuds de texte.

Siblings sont les ”frères” et les ”soeurs”.
Siblings sont des nœuds avec le même parent (dans la même liste childNodes).
Récupérer tous les éléments ayant ’abc’ and ’xyz’ comme classes : document.getElementsByClassName(”abc

xyz”) ;
Récupère tous les éléments qui ont une classe ”abc”, à l’intérieur d’un élément qui a

l’ID ”xyz” : document.getElementById(”xyz”).getElementsByClassName(”abc”) ;
– sélection par attribut name sur certains éléments

5.2.1 propriétés

L’objet document possède également des propriétés :
document.documentElement ;
document.head ;
document.body ;

5.3 Manipulation des attributs des éléments

Une fois nous avons sélectionné un nœud élément, les méthodes que nous allons voir
permettent d’agir sur ses attributs.

Les nœuds d’attribut sont accessibles via leur élément conteneur, au lieu d’être des
nœuds enfants de cet élément.

48

5.4. MANIPULATION DU CONTENU

Tous les attributs sont accessibles par les méthodes suivantes :

elem.hasAttribute(nomAtt) : vérifie l’existance de l’attribut nomAtt et retourne un
booléen.

elem.getAttribute(nomAtt) : récupère la valeur de l’attribut nommé nomAtt.

elem.setAttribute(nomAtt,valeur) : affecte valeur comme valeur de l’attribut nommé
nomAtt.

elem.removeAttribute(nomAtt) : supprime l’attribut nommé nomAtt.

La méthode setAttribute() ajout un attribut à un élément. La syntaxe est

element.setAttribute(”attribut”,”valeurAttribut”)

permet de définir ou modifier la propriété ”style” d’un élément et là on travaille di-
rectement avec CSS.

element.setAttribute(”style,”définition CSS”) fournir le nom de l’attribut et sa va-
leur

Mais attention : cette opération écrase tous les autres styles inline associés à cet élément
(à vérifier si cela comprend les styles hérités, sorry !). A utiliser avec prudence en tout cas.
var el = document.getElementById(”some-element”) ; el.setAttribute(”style”, ”background-
color :darkblue ;”) ;

getAttribute()

<script type="text/javascript">

var link = document.getElementById(’myLink’);

var href = link.getAttribute(’href’); // On récupère l’attribut "href"

alert(href);

link.setAttribute(’href’,’http://www.google.com’); // on édite

</script>

Remplacement d’éléments replaceChild(newNode, list.firstChild) ;

5.4 Manipulation du contenu

la propriété innerHTML représente le contenu HTML d’un élément.

la propriété textContent représente le contenu textuel d’un élément.

Méthode d’abonnement addEventListener La méthode addEventListener permet d’abon-
ner à l’objet sur lequel elle est invoquée une fonction pour l’événement précisé. ob-
jet.addEventListener(eventType, listenerFunction)

Insertion – noeudParent.insertBefore(noeudInséré,noeudRéférence) : insère noeudInséré
avant noeudRéférence comme fils de noeudParent

49

CHAPITRE 5. MANIPULATION DU DOM

– parent.appendChild(noeudAjouté) : le nœud noeudAjouté est ajouté à la fin des fils
de parent

si le nœud inséré ou ajouté existe dans le document, il est alors déplacé (donc sup-
primé de la position existante et inséré/ajouté à la position demandée).

5.5 Suppression de nœuds

Suppression et remplacement

– parent.removeChild(noeud) : noeud est supprimé des fils de parent. appeler cette
méthode à partir de l’élément parent du nœud à effacer et fournir le nœud en paramètre.

– parent.replaceChild(remplac¸ant,remplacé) : remplaçant prend la place de remplacé
comme fils de paren

Ajout d’éléments

La méthode createElement() créé un nouvel élément, en utilisant le nom de l’élément
fourni en paramètre.

La méthode appendChild() : ajoute un nouvel enfant à la fin de la liste.

La méthode insertBefore() : permet d’insérer un nouveau nœud avant.

La méthode createTextNode() crée ce nœud de texte ; il suffit de fournir le texte lui-
même.

5.6 Création de nœuds

la méthode createTextNode() permet de placer du texte dans un élément.

1. Arbre initial

<div id="mon_div">

toto

</div>

2. Execution du code

var zone=document.getElementById("mon_div");

var p=document.createElement("p");

var texte=document.createTextNode("blablabla ...");

p.appendChild(texte);

zone.appendChild(p);

3. Nouvel arbre

50

5.7. CHANGEMENT DE STYLE

<div id="mon_div">

toto

<p>blablablabla ...</p>

</div>

La méthode :
cloneNode() : permet de cloner un nœud existant.
cloneNode(true) : clone le nœud et ses enfants.
cloneNode(false) : clone sans les enfants.
Si vous fournissez true en paramètre à cloneNode(), une ”copie en profondeur” est

effectuée, laquelle prend en compte également les enfants ; false ne copie que le nœud
lui-même.

5.7 Changement de style

Pour changer le style d’un élément HTML, on utilise la syntaxe :
element.style.property = nouveauStyle
Agir sur les propriétés CSS
Tout élément HTML dispose d’un attribut style en JavaScript. Les noms des propriétés

CSS doivent être convertis en camel case. Par exemple :
– la propriété style d’un élément permet d’agir sur les propriétés CSS de cet élément

définies via l’attribut style ou dans le document HTML, mais elle ne permet pas d’accéder
aux valeurs des propriétés définies dans une feuille de style.

– on utilise directement le nom de la propriété CSS après ”conversion camelback” si
nécessaire c’est à dire font-size devient fontSize, border-right-style devient borderRight-
Style, etc.

– les valeurs sont toujours des chaı̂nes de caractères
– les unités doivent être précisées

<script type="text/javascript">

let e = document.getElementById("abc") ;

e.style.fontWeight = " bold " ;

e.style.fontSize = " 12 px " ; // l’unité est obligatoire

e.style.marginRight = " 10 px " ;

e.style.marginTop = " 2% " ;

e.style.backgroundColor = " rgba (128 ,0 ,0 ,0.5) " ;

let r = element.style.marginRight ;

let R = parseInt(r)+50;

e.style.marginRight = R + "px" ;

51

CHAPITRE 5. MANIPULATION DU DOM

</script>

getComputedStyle la méthode getComputedStyle de l’objet window permet d’obtenir
les valeurs des propriétés CSS appliquées par le navigateur

<html>

<body>

<div id="abc">DOM est génial, non !</div>

<script>

x=document.getElementById("abc")

x.style.color = "blue";

x.style.fontSize = "28pt";

x.style.backgroundColor = "red";

</script>

</body>

</html>

5.8 Exercices

Exercice 16. Écrire un script qui alterne la couleur des éléments d’une liste.

52

6
Gestion des événements

Un événement est une réaction à l’aide de scripts JavaScript, à une action de l’utilisa-
teur sur un document HTML. Par exemple un clic de la souris (action) sur un lien ouvre
(réaction) une autre page Web.

Exemples d’action : clique sur un bouton, survoler une image, cliquer dans un champs
texte, quitter un champs texte, ouverture d’un document HTML, fermeture d’un docu-
ment HTML, envoyer un formulaire, appuyer sur une touche du clavier, redimensionner
une fenêtre du navigateur.

etc ...
Exemples de réaction : affichage d’un message d’alerte, ouverture d’une fenêtre Pop-

up, fermeture d’une fenêtre, effectuer un calcul, etc...
Les événements JavaScript permettent l’interactivité avec la machine. La plupart des

langages de programmation ont un certain type de modèle d’événement.
Pour certaines balises HTML est associé un ensemble d’événements. Un événement

en JavaScript est un attribut de balise. Tous les événements commence par ’on’. Par
exemple : OnClick, onMouseOver, ondblclick, etc ...

Le Tableau 6.1 donne la liste des événements et les balises auquelles ils sont associées.
Certains événements peuvent ne pas exister dans toutes les versions de JavaScript .

La syntaxe est

53

CHAPITRE 6. GESTION DES ÉVÉNEMENTS

<balise onEvenement= "code js ou fonction js"> ... </balise>

Exemple : Quand on clique sur l’image ”img2.jpeg”, elle est remplacée par l’image
”img32.jpeg”.

Losque le code JavaScript est assez long, il est préférable de l’écrire sous forme d’une
fonction et d’appeler cette fonction dans l’événement.

Exemple :

<script type="text/javascript">

function effacerImg(){

for(i=0;i<document.images.length;i++){document.images[i].src=’’;}

}

</script>

Cliquez pour cacher toutes les images de ce document

<form>

<input type="button" value="Cacher toutes les images" onClick="effacerImg()

">

</form>

Dans l’exemple suivant, on utilise l’événement onKeyUp. Le contenu du champs text
est mis en majuscule.

<script type="text/javascript">

function Maj() {

var C = document.getElementById("abc");

C.value = C.value.toUpperCase();}

</script>

<form>

Nom : <input type="text" id="abc" onKeyUp="Maj()">

</form>

L’exemple suivant utilise l’événement onResize pour afficher la taille de la fenêtre en
cours.

<body onResize="modifier()">

<script>

function modifier() {

var w = window.outerWidth;

var h = window.outerHeight;

var texte = "
 Largeur=" + w +’,
’+ " hauteur=" + h;

54

6.1. EXERCICES

document.getElementById("abc").innerHTML = texte;

}

</script>

<p>Redimensionner votre fenêtre pour voir sa taille </p>

Événements en JavaScript

6.1 Exercices

55

CHAPITRE 6. GESTION DES ÉVÉNEMENTS

Événement Se produit quand S’applique à :
OnAbort l’utilisateur a arrêté le chargement de

l’image.
images

onBlur on quitte la fenêtre ou un objet de for-
mulaire

Button, Checkbox, FileUpload, Layer, Pass-
word, Radio, Reset, Select, Submit, Text, Tex-
tArea, window

onChange un élément de formulaire est modifié FileUpload, Select, Submit, Text, TextArea
onClick on clique dans ou sur un élément Button, document, Checkbox, Link, Radio,

Reset, Select, Submit
dblclick double clique de souris document, Link
onDragDrop on glisse un élément sur une fenêtre à

l’aide la souris
fenêtres

onError le chargement de l’image ou de la
fenêtre provoque une erreur

Images, fenêtres

onFocus on sélectionne la fenêtre ou l’objet for-
mulaire

Button, Checkbox, FileUpload, Layer, Pass-
word, Radio, Reset, Select, Submit, Text, Tex-
tArea, window

onDlClick on fait un double clic du bouton
gauche de la souris

Boutons, boutons radio, boutons submit et
reset, liens

onKeyDown une touche du clavier est pressée Documents, images, liens, zones texte
onKeyPress on appuie et maintient une touche du

clavier
Documents, images, liens, zones texte

onKeyUp on relâche une touche du clavier. Documents, images, liens, zones texte
onLoad le document se charge Documents, images, window
onMouseDown on clique avec le bouton de la souris Documents, boutons, liens
onMouseMove on bouge la souris rien par défaut
onMouseOut le pointeur de la souris sort d’une zone

de sélection graphique ou un lien
Cartes, liens

onMouseOver le curseur passe au dessus d’un lien area, liens
onMouseUp on relâche le bouton de la souris Documents, boutons, liens
onMove l’utilisateur ou un script bouge une

fenêtre
fenêtres

onReset on réinitialise un formulaire Formulaires
onResize l’utilisateur ou un script change la

taille d’une fenêtre
window

onSelect on sélectionne une zone ou un champ
texte (clavier ou souris)

Champs ou zones texte

onSubmit on envoie un formulaire. Formulaire
onUnLoad on ferme la fenêtre. Documents

TABLE 6.1 – Événements en JavaScript

56

6.1. EXERCICES

Événement se produit quand s’applique à
onAbort l’utilisateur a arrêté le chargement de l’image. images
onBlur on quitte la fenêtre ou un objet de formulaire Fenêtres, éléments de formulaire
onChange un élément de formulaire est modifié Champs texte, zones texte, listes de

sélection
onClick on clique dans ou sur un élément Boutons, boutons radio, boutons

submit et reset, liens
onDragDrop on glisse un élément sur une fenêtre à l’aide la

souris
fenêtres

onError le chargement de l’image ou de la fenêtre pro-
voque une erreur

Images, fenêtres

onFocus on sélectionne la fenêtre ou l’objet formulaire Fenêtres ,éléments de formulaire
onDblClick on fait un double clic du bouton gauche de la

souris
Boutons, boutons radio, boutons
submit et reset, liens

onKeyDown une touche du clavier est presséeDouble-click
this paragraph to trigger a function.Double-
click this paragraph to trigger a function.

Documents, images, liens, zones
texte

onKeyPress on appuie et maintient une touche du clavier Documents, images, liens, zones
texte

onKeyUp on relâche une touche du clavier. Documents, images, liens, zones
texte

onLoad le document se charge Documents
onMouseDown on clique avec le bouton de la souris Documents, boutons, liens
onMouseMove on bouge la souris rien par défaut
onMouseOut le pointeur de la souris sort d’une zone de

sélection graphique ou un lien
Cartes, liens

onMouseOver le curseur passe au dessus d’un lien liens
onMouseUp on relâche le bouton de la souris Documents, boutons, liens
onMove l’utilisateur ou un script bouge une fenêtre fenêtres
onReset on réinitialise un formulaire Formulaires
onResize l’utilisateur ou un script change la taille d’une

fenêtres
fenêtres

onSelect on sélectionne une zone ou un champ texte (cla-
vier ou souris)

Champs ou zones texte

onSubmit on envoie un formulaire. Formulaires
onUnLoad on ferme la fenêtre. Documents

TABLE 6.2 – Événements en JavaScript 57

CHAPITRE 6. GESTION DES ÉVÉNEMENTS

Objet Événements associables
Lien hypertexte onClick, onMouseOver, onMouseOut
Fenêtre onLoad, onUnload
Bouton, Case à cocher, Boutons : radio, submit, Reset onClick
Liste de sélection d’un formulaire onBlur, onChange, onFocus
Bouton Submit onSubmit
Champ de texte et zone de texte onBlur, onChange, onFocus, onSelect

TABLE 6.3 – Événements associables à un objet

58

7
Programmation orientée objet en Javascript

Il y a trois paradigmes (façons de programmer) de programmation largement uti-
lisés : La programmation procédurale : le code est un enchaı̂nement de procédures pour
résoudre le problème. La programmation fonctionnelle : le code est un enchaı̂nement de
fonctions pour résoudre le problème. La programmation orientée objet (POO) : on identi-
fie les acteurs (=objets) du problème puis on détermine la façon dont ils doivent interagir
pour résoudre le problème.

La programmation orientée objet est une nouvelle façon de concevoir et de développer
des applications informatiques. Elle permet une plus grande modularité, ainsi qu’une
meilleure lisibilité du code et une meilleure maintenabilité du code.

7.1 Défitions d’objet et classe

La POO consiste à représenter des objets du monde réel dans un programme infor-
matique.

Pour représenter un objet du monde réel dans un programme informatique, on considère
un ensemble de données appelées aussi attributs ou propriétés de cet objet et un ensemble
d’actions appelées aussi méthodes de cet objet.

59

CHAPITRE 7. PROGRAMMATION ORIENTÉE OBJET EN JAVASCRIPT

Classe : voiture
Attribus ou propriétés

Marque
Modèle
Couleur

...
Action ou méthodes

Démarrer
rouler

accélérer
...

TABLE 7.1 – Une classe voiture

Chaque attribut ou propriété est caractérisé par sa valeur. Une méthode s’appelle
aussi fonction membre, est une action applicable à son objet.

Exemples d’objet :

– compte bancaire : a pour attributs ou propriétés numéro, nom de son propriétaire,
solde, type de compte etc et comme méthodes débiter, accréditer, afficher solde, bloquer,
etc

– footballeur : a pour attributs ou propriétés nom, numéro qu’il porte etc et a pour
actions ou méthodes dribbler, courir, attraper le ballon, marquer le but etc

– voiture : a pour attributs marque, modèle, couleur, et a comme actions ou méthodes
démarrer, rouler, accélérer etc...

Représentation graphique d’une classe. Voir Table 7.1

– Etudiant : nom, code, filière, modules suivis, notes etc et a comme actions ou méthodes
valider, passer session de rattrapage, etc

Une classe est une description d’un ensemble d’objets ayant une structure de données
commune (attributs ou propriétés) et disposant des mêmes méthodes (ou actions). Ainsi,
tous les objets d’une même classe ont en commun les mêmes propriétés et les mêmes
méthodes.

Une classe est caractérisée par ses attributs ou propriété et ses méthodes.

Une classe peut être vue comme un modèle d’objet ou comme un moule (voir Figure
7.2) qui permet de créer autant d’objets de même type et de même structure. L’instancia-
tion est l’opération de créer un objet d’une classe. La notion de classe généralise celle de
type.

60

7.1. DÉFITIONS D’OBJET ET CLASSE

FIGURE 7.1 – Instanciation : création d’objets à partir d’une classe

FIGURE 7.2 – Le moule (la classe) permet de créer autant d’objets qu’on veut

61

CHAPITRE 7. PROGRAMMATION ORIENTÉE OBJET EN JAVASCRIPT

Dans la pratique, on commence par créer une classe en déclarant ses propriétés, et
programmant ses méthodes. Lorsqu’on déclare qu’un objet est de cette classe, alors cet
objet obtient automatiquement toutes les propriétés et méthode définis dans sa classe. Il
ne reste plus qu’à spécifier les valeurs des propriétés pour chaque objet.

Certains langages de programmation supportent la POO et d’autres non. Par exemple
C n’est pas orienté objet. Par contre son extention C++ l’est.

Il y a deux grandes catégories de langages à objets :
– les langages à classes, comme C++, Java, Python et d’autres.
– les langages à prototypes, comme JavaScript, NewtonScript, Self, Lua et d’autres.
La programmation orientée prototype est un style de programmation orientée objet

qui n’utilise pas les classes.

7.2 JavaScript et programmation orienté objet

Comme JavaScript est spécialement fait pour améliorer le langage HTML, fait que
la plus part de ses objets utilisés sont prédéfinis ainsi que leur propriétés et méthodes.
La Figure 7.3 présente tous les objets prédéfinis en JavaScript . On peut exceptionnelle-
ment définir des classes et des objets en JavaScript , mais ceux prédéfinis sont largement
suffisants.

Les mécanismes relatifs à la programmation orientée objet sont différents de ceux de
Java ou C++. En JS la notion de classe et le concept d’héritage n’existent.

Les méthodes se terminent toujours avec des parenthèses. Elles peuvent recevoir ou
non des paramètres. Les propriétés ne supportent pas les parenthèses.

En Javascript, pour accéder à une propriété d’un objet, on utilise la syntaxe :

Objet.propriété

et pour modifier une propriété

Objet.propriété=nouvelleValeurDePropriété

Par exemple

<html>

<body><head><title>Ma page Web </title></head></body>

<script type="text/javascript">

document.write(document.title); // retourne ’Ma page Web’

document.title=’Ma nouvelle page Web’

// le titre de la fenêtre devient ’Ma nouvelle page Web’

</script>

62

7.2. JAVASCRIPT ET PROGRAMMATION ORIENTÉ OBJET

FIGURE 7.3 – Les objets prédéfinis en JavaScript

63

CHAPITRE 7. PROGRAMMATION ORIENTÉE OBJET EN JAVASCRIPT

</body>

</html>

Certaines propriétés sont modifiables, par contre d’autres sont en lecture seule, elles
permettent uniquement de récupérer des informations sur les objets.

Pour définir un nouveau objet

var monObjet = new Object();

Par exemple

<script type="text/javascript">

var maDte=new Date();//instanciation de l’objet maDte

document.write(maDte);

// retourne Thu Jan 28 2021 14:23:24 GMT+0100 (UTC+01:00)

document.write(maDte.getFullYear());

// retourne 2021

maDte.setFullYear(2029);

document.write(maDte.getFullYear());

// retourne 2029

</script>

Objet.methode()

Par exemple :
alert() est une méthode de l’objet window, on écrit window.alert(”text d’alerte”).
write() est une méthode de l’objet document, on écrit document.write(”text1”,”text2”,..).

Dans le prochain chapitre, nous allons voir pour chaque objet ses propriétés et ses
méthodes.

7.3 Exercices

64

8
Fonctions avancées

65

CHAPITRE 8. FONCTIONS AVANCÉES

66

9
Gestion des erreurs et débogage

67

CHAPITRE 9. GESTION DES ERREURS ET DÉBOGAGE

68

10
Programmation asynchrone en Javascript

69

CHAPITRE 10. PROGRAMMATION ASYNCHRONE EN JAVASCRIPT

70

11
Les modules en JavaScript

71

	Introduction à Javascript
	Architecture client serveur
	Langage client/serveur
	Fonctionnement de JavaScript
	Langages du Web
	Qu'est ce que JavaScript ?
	Caractéristiques du langage JavaScript
	Langages interprété ou compilé
	JavaScript et les autres langages
	JavaScript en évolution
	TypeScript

	JQuery
	Que peut-on faire avec JavaScript ?
	Mise en pratique de JavaScript
	Console JavaScript de navigateur
	Contenu de ce livre
	Exercices
	Où placer le code source Javascript ?
	Bases du langage JavaScript
	La méthode document.write()
	Les fenêtres de dialogue
	La méthode alert()
	La méthode prompt()
	La méthode confirm()

	Fonctions de base
	Exercices

	Variables et types de données
	Variables
	Nom de variable
	Déclaration de variable

	Types de données
	Conversion de types

	Constantes
	Opérateurs arithmétiques, booléens et de comparaison
	Les opérateurs arithmétiques
	Les opérateurs de comparaison
	Les opérateurs associatifs
	Les opérateurs d'incrémentation
	Les opérateurs logiques
	La priorité des opérateurs Javascript
	Opérateur sur les chaînes de caractères

	Structures conditionnelles
	La structure if
	Une autre structure conditionnelle
	switch

	Structures itératives
	La boucle for
	La boucle for in
	while
	do while

	Exercices

	Les fonctions
	Programmation de fonction
	Fonctions de haut niveau prédéfinies
	Exercices

	Objets et tableaux
	L'objet Array
	Tableaux
	Tableaux associatifs

	Tableaux prédéfinis de JavaScript
	Objet prédéfini images[]
	L'objet prédéfini links[]
	L'objet prédéfinis forms[]
	L'objet prédéfinis elements[]
	Localisation de balise

	Exercices

	Manipulation du DOM
	Qu'est-ce que le DOM ?
	Sélection des nœuds du DOM
	propriétés

	Manipulation des attributs des éléments
	Manipulation du contenu
	Suppression de nœuds
	Création de nœuds
	Changement de style
	Exercices

	Gestion des événements
	Exercices

	Programmation orientée objet en Javascript
	Défitions d'objet et classe
	JavaScript et programmation orienté objet
	Exercices

	Fonctions avancées
	Gestion des erreurs et débogage
	Programmation asynchrone en Javascript
	Les modules en JavaScript

