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1.5.1 Chiffrement par décalage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.2 Chiffrement affine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.3 Chiffrement par substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.4 Chiffrement de Vigenère . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.5 Chiffrement de Hill (1929) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.6 La machine ENIGMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.7 Masque jetable (One time pad) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.8 Chiffrement par permutation (transposition) . . . . . . . . . . . . . . . . . . . 10
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2.3 Diversification de la clé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Étapes de chiffrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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5.10.2 Méthode Baby Step Giant Step de Shanks . . . . . . . . . . . . . . . . . . . . . 76
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Chapitre 1

Introduction à la cryptographie

”Ce qui est secret est vulnérable.”

Jacques STERN (La Recherche Juin 2008).

1.1 Définitions

La cryptographie est pluridisciplinaire par excellence, carrefour de l’algèbre linéaire, de la théorie

des groupes, de la théorie de complexité, de la théorie des nombres, de la géométrie algébrique, de

l’algorithmique et de l’informatique.

La cryptographie est la science qui utilise les mathématiques pour préserver la discrétion des

messages. Elle permet aussi de stocker des informations sensibles ou de les transmettre à travers d’un

canal non sécurisé (comme l’Internet, radio, poste etc).

Le mot cryptographie vient des mots grecs ”kruptos” qui veut dire cacher, et graphein qui veut

dire écrire. C’est à dire écrire en langage codé, secret, chiffré.

La cryptographie est pratiquée par des cryptographes.

Le chiffrement ou le cryptage est l’opération qui consiste à transformer un message clair en

un message incompréhensible pour tout intrus. Le message transformé s’appelle message chiffré,

cryptogramme ou message crypté.

Le déchiffrement ou le décryptage est l’opération inverse du chiffrement, elle consiste à trans-

former un message chiffré en un message clair.

Une clef est un paramètre permettant des opérations de chiffrement et/ou déchiffrement.

La cryptanalyse est la science qui vise à retrouver le texte en clair sans connâıtre la clef. Une

cryptanalyse réussie peut fournir soit le texte clair soit la clef.

Une tentative de cryptanalyse s’appelle attaque.

La cryptologie est la discipline mathématique qui englobe la cryptographie et la cryptanalyse.

Un algorithme cryptographique est un ensemble de fonction mathématiques utilisé pour le

chiffrement et le déchiffrement.

Un crypto-système est l’algorithme cryptographique ainsi que toutes les clés possibles et tous

les protocoles qui le font fonctionner.

La robustesse d’un algorithme de chiffrement désigne sa force de résistance aux attaques.
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La cryptographie doit assurer :

- La confidentialité, consiste à rendre l’information inintelligible sauf à ceux de droit. Se résout

par des algorithmes cryptographiques.

- L’authentification : le destinataire doit pouvoir s’assurer de l’origine du message. Un intrus ne

peut passer pour l’expéditeur. Se résout par la signature électronique.

- L’intégrité : le destinataire doit pouvoir vérifier que le message n’a pas été modifié en cours de

route. Un intrus doit être incapable de faire passer un faux message pour un vrai. Se résout grâce aux

fonctions de hachage (fonction qui réduit un message de taille arbitraire en une châıne de taille fixe).

- La non-répudiation (ou non désaveu) : un expéditeur ne doit pas pouvoir nier à tort avoir

envoyé un message.

Un système cryptographiques satisfaisant ces 4 propriétés fondamentales s’appelle protocoles

cryptographiques.

1.2 Les principaux crypto-systèmes

1.2.1 Cryptographie à clé privée

S’appelle aussi crypto-système symétrique. Il est caractérisé par une seule clé partagée entre

l’expéditeur et le destinataire et qui sert au chiffrement et au déchiffrement. Elle doit rester secrètes.

Les algorithmes les plus répandus sont : DES, 3DES, IDEA, AES, ...

Ces algorithmes sont basés sur des opérations de transposition et de substitution des bits du texte

clair en fonction de la clé.

La taille des clés est de l’ordre de 128 bits, 256 bits.

L’avantage principal de la cryptographie symétrique est sa rapidité. Son inconvénient principal est

le partage de la clé.

1.2.2 Cryptographie à clef publique

S’appelle aussi cryptographie asymétrique. Elle est caractérisée par deux clés, une clé publique

PK , et une clé privée secrète SK . La connaissance de PK ne permet pas de déduire SK .

Les algorithmes se basent sur des concepts mathématiques tels que l’exponentiation de grands

nombres premiers (RSA), le problème des logarithmes discrets (ElGamal), ou encore le problème du

sac dos (Merkle-Hellman).

Le principe de ce genre d’algorithme est qu’il s’agit d’une fonction unidirectionnelle, trappe. Une

telle fonction a la particularité d’être facile à calculer dans un sens, mais difficile voire impossible dans

le sens inverse. La seule manière de pouvoir réaliser le calcul inverse est de connâıtre une trappe.

L’algorithme de cryptographie asymétrique le plus connu est le RSA.

La taille des clés s’étend de 512 bits à 2048 bits en standard.

Le chiffrement symétrique est environ 1000 fois plus rapide que le chiffrement asymétrique.

La distribution des clés est facile car l’échange des clés secrètes n’est plus nécessaire. Chaque

utilisateur conserve sa clé secrète sans jamais la divulguer. Seule la clé publique est distribuée. La

connaissance de la clé publique ne permet pas de déduire la clé secrète.
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1.3 La cryptanalyse

Il y a quatre niveaux d’attaques. Chacune suppose la connaissance complète de l’algorithme de

chiffrement. Oscar étant l’attaquant.

Niveaux d’attaques possibles :

1 Texte chiffré connu : Seul C est connu d’Oscar

2 Texte clair connu : Oscar connâıt C et M correspondant

3 Texte clair choisi : 8M, Oscar peut obtenir C

4 Texte chiffré choisi : 8C, Oscar peut obtenir M

Algorithmes d’attaques

1 Attaque brutale : Énumérer toutes les valeurs possibles de clefs.

2 Attaque par séquences connues : deviner la clef si une partie du message est connue ex : en-têtes de

standard de courriels

3 Attaque par séquences forcées : faire chiffrer par la victime un bloc dont l’attaquant connâıt le

contenu, puis on applique l’attaque précédente ...

4 Attaque par analyse différentielle : utiliser les faibles différences entre plusieurs messages (ex : logs)

pour deviner la clef

1.3.1 Attaque sur le texte chiffré connu

Le cryptanalyse dispose du texte chiffré de plusieurs messages, qui ont été chiffré avec le même

algorithme. on recherche le texte clair et/ou la clé. On procède par analyse de fréquence des lettres

utilisées dans le texte chiffré.

1.3.2 Attaque à texte clair connu

Étant donné un texte chiffré et un fragment de texte clair associé, on recherche le texte clair restant

et/ou la clé. On procède par force brute,

1.3.3 Attaque sur un texte clair choisi

Le cryptanalyse peut choisir un texte clair M et obtenir le texte chiffré associé.

1.3.4 Attaque sur le texte chiffré choisi

Le cryptanalyse peut choisir un texte chiffré et obtenir le texte déchiffré associé M .

1.4 Algorithme publié et algorithme secret

1.4.1 Algorithme secret

De tels algorithmes sont utilisés par un plus petit nombre d ?utilisateurs. Donc il y a d’intérêts à

le casser. Il est impossible de garder un Algorithme secret pour longtemps.
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1.4.2 Algorithme publié

Tout le monde a le droit de l’explorer. Ainsi, les failles peuvent être plus facilement découvertes. La

sécurité est donc améliorée. Ce qui permet aussi une standardisation générale. Les algorithmes publiés

sont de loin les plus utilisés.

1.4.3 Principe de Kerckhoffs

En 1883 A. Kerckhoffs [?] a posé les principes de la cryptographie moderne : La sécurité d’un

système cryptographique ne doit pas reposer sur la non divulgation de l’algorithme de chiffrement

utilisé mais uniquement sur la non divulgation des clés utilisées.

Autrement dit aucun secret ne doit résider dans l’algorithme de chiffrement mais plutôt dans la

clé. Ce principe est bien évidemment toujours d’actualité.

L’algorithme de confidentialité, jamais rendu public officiellement, de la norme GSM a été dévoilé et

publié sur l’Internet. Il en est de même pour la RFID (Radio Frequency Identification ou identification

par radio-fréquence) De nombreuses voitures intègrent un systèmes anti-vol, fondés sur la technologie

RFID, relié au système d’injection de carburant.

Un système cryptographique ou un crypto-système est la donnée de :

- un ensemble fini P appelé l’espace des textes clairs ;

- un ensemble fini C appelé l’espace des textes chiffrés ou cryptogrammes ;

- un ensemble fini K appelé l’espace des clefs ;

- pour tout k ∈ K, une fonction de chiffrement ek : P → C et une fonction de déchiffrement dk : C → P
telles que dkoek = IdP .

Pour utiliser un tel crypto-système l’émetteur et le destinataire doivent se mettre d’accord sur une

clef qu’ils doivent conserver secrète. L’émetteur envoie un cryptogramme C = E(k,m) au destinataire

qui calcule D(k,C) = M pour retrouver le message clair m.

Un crypto-système est mono-alphabétique si une même lettre dans le texte clair est toujours chiffré

en la même lettre du cryptogramme.

1.5 Quelques crypto-systèmes historiques

Par Z26 on note l’anneau des entiers modulo 26 soit {0, 1, · · · , 25}. On représente chaque lettre par

son ordre dans l’alphabet : a, b, c ... z par les nombres 0, 1, ..., 25.

1.5.1 Chiffrement par décalage

P = C = K = Z26, pour 0 ≤ k ≤ 25 ek(x) = x+ k mod26 et dk(y) = x− k mod 26 où x, y ∈ Z26.

Le chiffrement de César est un cas particulier de ce chiffrement, il suffit de prendre k = 3. Il est d’une

sécurité très faible, en moyenne et par recherche exhaustive on a 13 essais.

Master C2SI - 2023-24 Introduction à la cryptographie E. M. Souidi
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1.5.2 Chiffrement affine

Par Z∗
26 on note le groupe multiplicatif des éléments inversibles dans Z26. On pose P = C = Z26,

K = Z
∗
26 × Z26 pour k = (a, b) ∈ K ek(x) = ax+ b et dk(y) = a−1(y − b). On montre que facilement

que ek est une fonction de chiffrement si elle est injective ce qui revient à dire que a est inversible dans

l’anneau Z26.

Par exemple si (a, b) = (3, 5) on a ek(x) = 3x+ 5 et dk(y) = 9(y + 21)

Il y a 12× 26 = 312 clés possibles, c’est peu !

1.5.3 Chiffrement par substitution

P = C = Z26, K = S26 l’ensemble des permutations de l’ensemble {0, 1, · · · , 25} on |K| = 26! si

π ∈ K eπ(x) = π(x) et dπ(y) = π−1(y). Le nombre de clefs est 26! soit un peu plus de 4 × 1026. La

recherche exhaustive est difficile mais il y a une autre méthode. Le chiffrement par décalage est un cas

particulier du chiffrement par substitution.

Dans les chiffrements vus à présent, un caractère est toujours chiffré de la même façon. On dit

que ces chiffrements sont mono-alphabétique. Contrairement aux chiffrements ci-dessus, dans les

chiffrements ci-dessous et dans un même message, un caractère est chiffré de plusieurs façons On

l’appel chiffrement poly-alphabétique.

1.5.4 Chiffrement de Vigenère

Mis au point en 1586 par Blaise de Vigenère, un diplomate français. Soit m un entier > 0. P = C =

K = Z
m
26. Si k = (k1, · · · , km) ∈ K alors ek(x1, · · · , xm) = (x1 + k1, · · · , xm + km) et dk(y1, · · · , ym) =

(y1−k1, · · · , ym−km). Le nombre de clé est 26m, par exemple pour m = 5, 26m est environ 1, 1×107.

A la main c’est difficile, mais à la machine c’est très facile. Ce chiffrement est poly-alphabétique. Un

caractère peut être chiffré de m façons.

1.5.5 Chiffrement de Hill (1929)

L. Hill, mathématicien cryptographe (1891-1961). Soit m un entier > 0. P = C = Z
m
26, K =

GLm(Z26 le groupe des matricesm×m inversibles et à coefficients dans Z26. Soit k =∈ K, ek(x1, · · · , xm) =

(x1, · · · , xm)k et dk(y1, · · · , ym) = (y1, · · · , ym)k−1.

1.5.6 La machine ENIGMA

m = 3 et k = (3, 1, 2) le texte clair cryptographie est chiffré en ?

Montrer que

1.5.7 Masque jetable (One time pad)

Mis au point par Vernam en 1917. Utilisé pour le téléphone rouge entre Moscou et Washington

pendant la guerre froide. Il a aussi servi à chiffrer les messages télégraphiques. Le problème de dis-

tribution de clef a été résolu par la valise diplomatique. Mais pour d’autres utilisations il est peu
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pratique. En fait, la clé est aussi longue que le message à chiffrer. En 1941, C. Chanon à montré que

ce chiffrement est impossible à casser.

Soit K une clé et M le message à chiffrer. Ils sont de même longueur. On écrit M et K en binaire,

par exemple en ASCII. On a on obtient le cryptogramme C = M ⊕K. Ayant la clé K, le destinataire

calcule C ⊕K pour obtenir M .

Pour chiffrer M = RDV A DIX H, on convertit ce message en binaire en utilisant le code ASCII,

0101001001000100010101100010000001000001001000000100010001001001010110000010000001001000

et on considère la clé K = MERCI BIEN. (y compris le point) soit en code ASCII

0100110101000101010100100100001101001001001000000100001001001001010001010100111000101110

C = K ⊕M=

et pour déchiffrer C ⊕K=

Montrer que

1.5.8 Chiffrement par permutation (transposition)

Dans ce chiffrement, les caractères ne change pas, mais ils sont réordonnés. Soit P = C = Z
m
26 où m

est un entier > 1 et K est l’ensemble des permutations de {1, 2, · · · ,m}. Pour σ ∈ K eσ(x1, · · · , xm) =

(xσ(1), · · · , xσ(m)) et dσ(y1, · · · , ym) = (yσ−1(1), · · · , yσ−1(m)). Ce chiffrement consiste à conserver les

mêmes caractères du texte clair et on applique une permutation à chaque groupe de m caractères.

Pour m = 6 et

σ =

(

1 2 3 4 5 6

6 5 4 3 2 1

)

Le chiffrement de cryptography donne otpyrcyhparg Le chiffrement par permutation est un cas

particulier du chiffrement de Hill. En fait à toute permutation on peut associer une matrice (aij) de

taille m×m donnée par

aij =







1 si i = π(j)

0 sinon

le chiffrement avec Kπ est équivalent au chiffrement de Hill ? K−1
π = Kπ−1

?

Montrer que

1.5.9 Le carré de Polybe

Polybe est un historien grec qui a vécut aux environs de -205 avant JC à -125 av. JC

1 2 3 4 5

1 A B C D E

2 F G H I,J K

3 L M N O P

4 Q R S T U

5 V W X Y Z

Master C2SI - 2023-24 Introduction à la cryptographie E. M. Souidi
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lettre fréquence lettre fréquence

a 6,16 n 6,02

b 0,40 o 5,12

c 5,35 p 2,92

d 3,86 q 0,62

e 18,61 r 5,35

f 2,24 s 6,96

g 1,79 t 7,41

h 1,48 u 5,03

i 6,35 v 1,03

j 0,04 w 0,35

k 0,13 x 0,36

l 5,26 y 1,39

m 1,97 z 0,04

Table 1.1 – Table des fréquences relatives des lettres en français.

Pour chiffrer un texte on remplace chaque lettre par ses coordonnées dans le tableau, en écrivant

d’abord la ligne, puis la colonne. Par exemple, le A est remplacé par 11, le B par 12, le F par 21, le

S par 43 etc. Si nous codons FEU nous obtenons 211545. Remarquons que nous pouvons remplir le

tableau de plusieurs façons différentes.

1.5.10 Cryptanalyse des crypto-systèmes monoalphabétiques

Une méthode de cryptanalyse un crypto-systèmes est d’explorer l’espace de toutes les clés possibles.

C’est ce qu’on appelle cryptanalyse exhaustive.

D’après un document rédigé et retrouvé en 1987 à Istanbul, Abu Yusuf Ya’qub ibn Is-haq ibn

as-Sabbah Oòmran ibn Ismäıl al-Kindi (801-873) savant arabo-musulman du neuvième siècle, dans

son traité intitulé ”Manuscrit sur le déchiffrement des messages cryptographiques” a décrit la crypta-

nalyse par la fréquence d’apparition des lettres. C’est le premier manuscrit connu faisant mention des

fréquences d’apparition des lettres.

Il explique que ”la façon d’élucider un message crypté, si nous savons dans quelle langue il est

écrit, est de nous procurer un autre texte en clair dans la même langue, de la longueur d’un feuillet

environ, et de compter alors les apparitions de chaque lettre. Ensuite, nous nous reportons au texte

chiffré que nous voulons éclaircir et relevons de même ses symboles. Nous remplaçons le symbole le plus

fréquent par la lettre première (la plus fréquente du texte clair), le suivant par la deuxième, le suivant

par la troisième, et ainsi de suite jusqu’à’à ce que nous soyons venus à bout de tous les symboles du

cryptogramme à résoudre”. Cette technique est appelée analyse des fréquences.

Il est aussi intéressant d’étudier la fréquence d’apparence de quelques diagrammes ou trigrammes

en français la, le, ent, tion etc en anglais th, in, an the, ing etc.
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m1

c1

eKK

m2

c2

eKK

mn

cn

eKK· · ·

Figure 1.1 – Mode de chiffrement ECB

· · ·

x1 x2

ek ek

y1 y2

+ +IV = y0

Figure 1.2 – Mode de chiffrement CBC

1.6 Modes de chiffrement par bloc

Il y a quatre modes de chiffrement par bloc : ,

1.6.1 Le mode ECB (Electronic CodeBook)

C’est le mode le plus simple. Voir 1.1. Le message à chiffrer est découpé en blocs. Chaque bloc

est chiffré indépendamment des autres. ce mode est vulnérable aux attaques. les bloc qui se répètent

sont chiffré de la même façon. Permet de paralléliser les calculs. Voir 1.1. Il n’est pas utilisé dans la

pratique. Mais il peut être utilisé pour le chiffrement de mots de passe.

Un attaquant peut permuter des blocs, ou remplacer un bloc par autre sans que le destinataire ne

s’en aperçoive.

1.6.2 Le mode CBC (Cipher Block Chaining)

Voir 1.2. On fixe une valeur initiale y0 qui peut être choisie aléatoirement et partagée en clair.

yi = ek(yi−1 ⊕ x1) pour i ≥ 1

En plus de la clé les correspondants partagent la valeur initiale y0. Avant de chiffrer un bloc on le xor

avec le chiffré du bloc qui le précède. C’est d’ailleurs le mode le plus courant. Il rend le chiffrement plus

complexe en créant une dépendance entre les blocs successifs. Mais Il est impossible de paralléliser le

chiffrement.

Pour le déchiffrement en mode CBC voir 1.3.
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· · ·

y1 y2

dk dk

+ +

x1 x2

IV = y0

Figure 1.3 – Mode de déchiffrement CBC

ek

+

m1

c1

· · ·ek

+

m2

c2

IV = k0

Figure 1.4 – Mode de chiffrement OFB

1.6.3 Le mode OFB (Output FeedBack)

C’est une variante du mode CFB qui permet d’avoir un chiffrement totalement symétrique. Peu

utilisé, voir 1.4. c0 une valeur initiale et pour i ≥ 1 le bloc mi est chiffré comme

ci = mi ⊕ ek(ci−1)

Ce mode est utilisé pour des transmissions sur des canaux bruités. Par exemple transmission

satellitaire.

Le déchiffrement est donné par ci = ek(ci−1) et mi = ci ⊕ ek(ci−1)

1.6.4 Le mode CFB (Cipher FeedBack)

Voir 1.5. On commence par une valeur initiale c0, puis on chiffre le bloc clair mi comme

ci = mi ⊕ ek(ci−1) pour i ≥ 1

Le mode CFB est une façon de transformer une fonction E en un chiffrement par flot auto-

synchronisant.

usage possible en signature et en chiffrement réseau.

Le déchiffrement, voir 1.6, ne nécessite pas d’utiliser la fonction de déchiffrement, en effet mi =

ci ⊕ ek(ci−1) avec c0 est valeur initiale.
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ek +

m1

c1

IV = z0 ek + · · ·

m2

c2

Figure 1.5 – Mode de chiffrement CFB

ek +IV = c0 +ek

y2y1

x1 x2

· · ·

Figure 1.6 – Mode de déchiffrement CFB

1.6.5 Le mode CTR (Counter-mode encryption)

Ce mode utilise pour le chiffrement un compteur de valeur initiale v0. Il est totalement symétrique.

Il a de nombreux avantages : le chiffrement par flot, l’accès aléatoire aux données, parallélisable et

n’utilise que la fonction de chiffrement. Le compteur utilisé peut être une suite pseudo-aléatoire qu’il

sera facile de retrouver à partir de la graine (vecteur d’initialisation).

Un bloc mi est chiffré comme

ci = mi ⊕ ek(v0 + i)

Le déchiffrement se fait par

mi = ci ⊕ Ek(v0 + i)

Les différents calculs de chiffrement et de déchiffrement sont indépendants, comme pour le mode

ECB, mais un même bloc n’est jamais chiffré de la même façon.

1.7 Cryptographie symétrique et asymétrique

Il existe deux grands types de cryptographies :

- la cryptographie symétrique, (conventionnelle ou chiffrement à clef secrète) regroupe les algo-

rithmes pour lesquels expéditeur et destinataire partagent une seule et même clef utilisée à la fois pour

le chiffrement et le déchiffrement.
v0 m1

c1

⊕
ek

v0 + 1

c2

m2

⊕
ek · · ·

v0 + n mn

cn

⊕
ek

Figure 1.7 – Le mode de chiffrement CTR
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CHAPITRE 1. INTRODUCTION À LA CRYPTOGRAPHIE 15

La cryptographie à clé secrète peut se classer en deux catégories :

1) les systèmes de chiffrement par bloc.

2) les systèmes de chiffrement à flot.

Un système de chiffrement par bloc opère sur des blocs de texte clair de taille fixe, et renvoie des

blocs de texte chiffré de taille fixe (en général de même taille).

Un système de chiffrement à flot opère sur les caractères individuels du texte clair par une trans-

formation dépendant de la clé et de la position.

Le problème étant qu’on doit disposer d’un moyen sécurisé pour échanger la clef.

Ce chiffrement a des avantages. Il est très rapide. Il est particulièrement utile pour chiffrer des

données à archiver. Cependant, ce type chiffrement seul est inadéquat au transmission de données

sécurisées, simplement en raison de la difficulté de la distribution sécurisée de la clef.

- la cryptographie à clef publique évite le partage d’un secret entre l’expéditeur et le destinataire

il suffit à l’émetteur de chiffrer le message avec la clef publique du destinataire. Ce dernier, à l’aide de

la clef secrète correspondante, est seul en mesure de déchiffrer le message reçu.

Toute personne en possession d’une copie de votre clé publique peut ensuite chiffrer des informa-

tions que vous seul pourrez lire. Même des gens que vous n’avez jamais rencontrés.

Le principal avantage de la cryptographie à clé publique est qu’elle permet à des gens qui n’ont

pas d’accord de sécurité préalable d’échanger des messages de manière sûre.

Les problèmes de distribution de clef sont résolus par la cryptographie à clef publique, dont le

concept fut inventé par Whitfield Diffie et Martin Hellman en 1975. Mais dans ?? il est établit que les

Services secrets britanniques étaient les premiers à l’inventer.

Il y a des crypto-systèmes combinent à la fois les meilleures fonctionnalités de la cryptographie

symétrique et de la cryptographie asymétrique. un tel crypto-système s’appelle crypto-système hybride.

1.8 Signatures numériques

Un des avantages majeurs de la cryptographie à clé publique est qu’elle offre une méthode permet-

tant d’utiliser des signatures numériques. La signatures numérique permet de contrôler l’authenticité,

l’intégrité du message, et la non répudiation. Ces éléments sont au moins aussi importants que le

chiffrement des données, sinon davantage. Une signature numérique a le même objet qu’une signa-

ture manuelle. bien qu’une signature manuelle est facile à contrefaire. Une signature numérique est

pratiquement impossible à contrefaire et, de plus, elle atteste le contenu de l’information autant que

l’identité du signataire.

1.9 Stéganographie

La stéganographie (du grec steganos, couvert et graphein, écriture) dissimule l’existence même de

l’information secrète (encre sympathique etc...). c’est l’art de cacher un message au sein d’un autre

message de caractère anodin, de sorte que l’existence même du secret en soit dissimulée. Alors qu’avec

la cryptographie habituelle, la sécurité repose sur le fait que le message ne sera sans doute pas compris.
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On peut cacher des messages dans des images jpeg, de fichiers mp3 ou des films. Jadis on utilisait

l’encre sympathique etc...

1.10 Exercices

Exercice 1. Chiffrer une phrase à l’aide du carré de Polybe. Faites-la déchiffrer par votre voisin de

classe.

Exercice 2. Soit le chiffrement k1 = K ∈ Z26 et ki = xi−1 pour tout message x = (x1, x2, · · · ). On

définit Ek(x) = x+ k mod 26 et Dk(y) = y − k mod 26.

Décrypter le chiffré suivant : MALVVMAFBHBUQPTSOXALTGVWWRG.

Exercice 3. Une recherche exhaustive de la clé dans le cas du système de Vernam a-t-elle un sens ?

Expliquez votre réponse.

Exercice 4. On considère une fonction de chiffrement par bloc de longueur 2 pour des clefs de longueur

2 donnée par

Ek : {0, 1}2 −→ {0, 1}2
(m1,m2) 7−→ S1((m1 ⊕ k1,m2 ⊕ k2))

où la fonction S1 est décrite ci-dessous

X [0, 0] [1, 0] [0, 1] [1, 1]

S1(X) [1, 1] [1, 0] [0, 0] [0, 1]

1. Chiffrer le message M = [0, 1, 1, 1, 0, 1] avec la clef K = [1, 0]

a) En utilisant le mode ECB,

b) En utilisant le mode OFB,

2. Déchiffrer le messageC = [0, 1, 1, 1, 0, 1] dans le cas où il a ?eté chiffré avec la clefK = [1, 1] et

a) en utilisant le mode CBC,

b) en utilisant le mode CFB.
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Chapitre 2

DES (Data Encryption Standard)

2.1 Introduction

HISTORIQUE :

Avant 1975 : chiffrements artisanaux (Vigenère, Hill).

1975-2000 : le DES (Data Encryption Standard), mais aussi FEAL, IDEA, RC5, ...

2000 ... ? AES (Advanced Encryption Standard), RC6, CAMELLIA, ...

Au début des années 1970, le développement des communications entre ordinateurs a nécessité la

mise en place d’un système de chiffrement standard.

DES est (Data Encryption Standard), et en français Standard de Chiffrement de Données. C’est un

système de chiffrement par blocs et à clé secrète. Conçu par IBM en 1975 suite à un appel d’offre de la

NSB (pour National Bureau of Standards) actuellement NIST (pour National Institute of Standards

and technology) des Etats Unis en 1973 pour la mise au point d’un système de cryptographie.

Le cahier des charges spécifiait que la sécurité devrait être liée à la clef, et ne devait pas dépendre

de la confidentialité de l’algorithme par application du principe de Kerckhoffs en plus de la confusion

et de la diffusion. Pour rappel, C. Shannon a montré que la combinaison de confusion et diffusion

permettait d’obtenir une sécurité convenable. La confusion consiste à masquer la relation entre le

clair et le chiffré. Alors que la diffusion consiste à chaque bit de texte clair d’avoir une influence sur

une grande partie du texte chiffré. Ce qui signifie que la modification d’un bit du bloc d’entrée doit

entrâıner la modification de nombreux bits du bloc de sortie correspondant.

La NSA (National Security Agency) participa à l’évaluation de cet algorithme. DES est soumis à

l’évaluation des chercheurs de ce domaine.

Il est adopté comme standard en 1977 après lui avoir apporté des modifications par le NSA (Na-

tional Security Agency). Il est re-évalué tous les cinq ans par le NBS. Il était le système le plus utilisé

dans le monde jusqu’à la fin des années 1990. Il a résisté aux différentes attaques pendant un quart de

siècle. Il a été utilisé dans les transactions bancaires. Il est utilisé pour chiffrer les mots de passe des

systèmes Unix.

DES chiffre par bloc de 64 bits en utilisant une clef de 56 bits, augmentée par 8 bits de parité,

pour obtenir un bloc de texte chiffré de 64 bits. DES est réalisé en 16 tours ou itérations. Voir 2.1

La clef de 64 bits est utilisée pour générer 16 autres clefs de 48 bits chacune qu’on utilisera lors

17
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Bloc clair - 64 bits

Premier tour - 64 bits

Deuxième tour - 64 bits

· · ·

Seizème tour - 64 bits

Bloc chiffré - 64 bits

Dérivation
de 16 sous-clés

de 48 bits

K1

K2

K16

Ki

K - 56 bits

Figure 2.1 – Fonctionnement du DES

de chacun des 16 tours du DES. Ces clefs sont les mêmes quel que soit le bloc qu’on chiffre dans un

message.

L’algorithme DES est simple, il ne combine que des permutations et des substitutions. On parle

en cryptologie de techniques de confusion et de diffusion.

De plus, DES est relativement facile à réaliser matériellement et certaines puces chiffrent jusqu’à

1 Go de données par seconde.

Ainsi, DES est conçu de manière à ce qu’une légère modification dans la clé ou dans le texte clair

se traduit par des changements très importants dans le texte chiffré.

Si on note par P , C et K l’ensemble des blocs clairs, l’ensemble des blocs chiffrés et l’ensemble des

clés, respectivement, alors P = C = {0, 1}64 et K = {0, 1}56. À chaque clé de 56 bits, on ajoute 8 bits

de parité de tel façon qu’elle devienne b1b2 . . . b64 avec
∑8

i=1 b8k+i ≡ 1 mod 2, 0 ≤ k ≤ 7. Le nombre

de clés est 256, soit environ 7.2× 1016.

Le DES a plusieurs avantages qui ont fait de lui un standard pendant longtemps :

il possède un haut niveau de sécurité,

il est complètement spécifié et facile à comprendre,

la sécurité est indépendante de l’algorithme lui-même, elle ne dépend que de la clé,

il est rendu disponible à tous, par le fait qu’il est publique,

il est adaptable à diverses applications (logicielles et matérielles),

il est rapide et exportable,

il repose sur une clé relativement petite, qui sert à la fois au chiffrement et au déchiffrement,

il est facile à implémenter.

2.2 Ingrédients

Dans cette section, nous décrivons, séparément, toutes les opérations qu’utilise DES.
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58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

Table 2.1 – La permutation IP

40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26 33 1 41 9 49 17 57 25

Table 2.2 – La permutation IP−1

2.2.1 La permutation IP et son inverse IP−1

La permutation IP (pour initiale permutation) est définie de {0, 1}64 −→ {0, 1}64 par la Table 2.1

qui se lit de gauche à droite et de haut en bas. Un nombre dans la table indique la position du bit

avant permutation et sa position dans la table indique son image après permutation.

Par exemple : le 58e bit d’une châıne x de 64 bits est le premier bit de IP (x) et le 50e bit de x est

le deuxième bit de IP (x) etc· · ·
Si x = b1 · · · b64 alors IP (x) = b58b50b42 · · · b7
L’inverse IP−1 de IP (x) est définie par le Table 2.2.

Si x = b1 · · · b64 alors IP−1(x) = b40b8b48 · · · b57b25.
Les permutations IP (x) et IP−1 n’affectent en rien la sécurité du DES. Elles sont utilisées pour

rendre plus facile le chargement du texte clair ou du texte chiffré dans une puce DES, car DES est

arrivé avant les microprocesseur 16 ou 32 bits.

2.2.2 L’expansion E

La transformation E : {0, 1}32 −→ {0, 1}48 est donnée par la table 2.3. E permet d’étendre une

châıne x de 32 bits en un bloc de 48 bits en doublant certains bits. Par E , x = b1b2 · · · b32 est transformé

en

E(x) = b32b1 · · · b4b5b4b5b6 · · · b31b32b1

en répétant certains bits.

Le premier bit de E(x) est le 32e bit de x, son 2e bit est le premier bit de x etc

2.2.3 Les S-Box

Le ”S” est pour substitution. Les lignes et colonnes de tous les Si-Box, 1 ≤ i ≤ 8, sont numérotées

à partir de 0 et sont en caractères gras.
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32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Table 2.3 – L’expansion E

16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10

2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

Table 2.4 – La permutation P

Comment agit un Si-box ? Les Si : {0, 1}6 −→ {0, 1}4 pour 1 ≤ i ≤ 8. Chaque Si-Box associe à un

bloc B = b1b2b3b4b5b6 un bloc de 4 bits :

– l’entier représenté par b1b6 après l’avoir transformé en décimal sélectionne une ligne de Si-box et

– l’entier représenté par b2b3b4b5 après l’avoir transformé en décimal indique une colonne de Si-box.

La valeur de Si(B) est la représentation en binaire de l’entier inscrit dans la position indiquée par la

ligne et la colonne dans la Si − box.

Exemple. En utilisant S1-Box. Soit B = b1b2b3b4b5b6 = 010011 alors la ligne est b1b6 = 01 = 1 en

décimal et la colonne est b2b3b4b5 = 1001 en décimal c’est 9, la valeur de S1(B) = 6 ou 0110 en binaire

et donc S1(010011) = 0110.

La sécurité de DES repose sur ces tables Si-Box de substitutions non linéaires très efficaces pour

diluer les informations.

2.2.4 La permutation P

La permutation P est donnée par la Table 2.4. Pour x = b1b2 . . . b32, P (x) = b16b7 . . . b25.

Par exemple sous l’action de P le bit 16 va en position 1, le bit 2 va en position 17.
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Table S1-Box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 12 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table S2-Box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

Table S3-Box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Table S4-Box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

Table S5-Box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

Table S6-Box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

Table S7-Box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

Table S8-Box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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2.2.5 La fonction f

La fonction f : {0, 1}32 −→ {0, 1}32 est définie en utilisant la fonction d’expension E , tous les

Si-box et la permutation P . Voir la Figure 2.2 C’est une fonction de confusion.

Soit Ri−1 et Ki deux châınes de bits de longueurs 32 et 48 bits respectivement.

On commence par effectuer une opération de ou exclusif entre E(Ri−1) et Ki. On scinde ensuite le

résultat de cette opération E(Ri)⊕Ki en huit blocs de 6 bits chacun, soit B1, · · · , B8. Ainsi E(Ri−1)⊕
Ki = B1.B2 · · ·B8. A chaque Bj , j = 1 · · · 8 on applique une fonction de substitution Sj-Box qui

renvoie un bloc de 4 bits en sortie Sj(Bj).

Les 8 blocs de 4 bits obtenus C1 = S1(B1), C2 = S2(B2) · · · C8 = S8(B8) sont ensuite concaténés

en un bloc de 32 bits auquel on applique la permutation P .

f(Ri−1,Ki) = P (S1(B1)S2(B2) · · · S8(B8))

Ri−1 32 bits Ki 48 bits

E Expansion

E(Ri−1) 48 bits

⊕

B1 B2 B3 B4 B5 B6 B7 B8

6 bits 6 bits 6 bits 6 bits 6 bits 6 bits 6 bits 6 bits

S1 S2 S3 S4 S5 S6 S7 S8

C1
4 bits

C2
4 bits

C3
4 bits

C4
4 bits

C5
4 bits

C6
4 bits

C7
4 bits

C8
4 bits

P

f(Ri−1,Ki) 32 bits

Figure 2.2 – Description de la fonctionf

2.2.6 Les transformations PC1 et PC2

La permutation PC1 ”permuted choice 1” est définie PC1 : {0, 1}64 −→ {0, 1}28 × {0, 1}28 et

donnée par la Table 2.5 où on remarque l’absence de 8, 16, ..., 64, ce qui signifie que les bits dans les

positions 8, 16, 24 · · · 64 sont ignorés tout simplement.

La transformation PC2 s’appelle ”permuted choice 2”, elle est définie PC2 : {0, 1}28×{0, 1}28 −→
{0, 1}48 et donnée par la Table 2.6.

La permutation PC2 agit sur un bloc de 56 bits pour produire un bloc de 48 bits. Par exemple,

le bit en position 33 est envoyé dans la position 35 en sortie. Les bits dans les positions 9, 18, 22, 25,

35, 38, 43, 54 sont ignorés.
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57 49 41 33 25 17 9 1 58 50 42 34 26 18

10 2 59 51 43 35 27 19 11 3 60 52 44 36

63 55 47 39 31 23 15 7 62 54 46 38 30 22

14 6 61 53 45 37 29 21 13 5 28 20 12 4

Table 2.5 – Transformation PC1

14 17 11 24 1 5 3 28 15 6 21 10

23 19 12 4 26 8 16 7 27 20 13 2

41 52 31 37 47 55 30 40 51 45 33 48

44 49 39 56 34 53 46 42 50 36 29 32

Table 2.6 – Transformation PC2

2.2.7 Les rotations circulaires LSi, i = 1, · · · , 16

LSi est une rotation circulaire vers la gauche d’une ou deux positions (en fonction de la ronde i)

agissants sur une châıne de 28 bits. Si i = 1, 2, 9, ou16 on décale d’une position sinon on décale de

deux positions.

Par exemple LS1(b1 · · · b28) = b2b3 · · · b28b1 et LS3(b1 · · · b28) = b3b4 · · · b28b1b2

2.3 Diversification de la clé

Une clef K est une châıne de 56 bits, à laquelle on ajoute 8 bits de parité. Ils sont des bits de

détection d’erreurs. Les bits en positions 8, 16 · · · et 64 sont tels que chaque octet de la clé K contient

un nombre impair de 1. Les bits de parité sont ignorés dans le procédé de diversification de la clef.

Ce procédé permet de créer 16 sous clés Ki, i = 1, · · · , 16. Chaque Ki est utilisé dans le ieme tour

de fonctionnement de DES.

Chaque clé de tour Ki contient un sous ensemble différent des 56 bits de la clé. Soit K une clef

sans bit de parité. On applique PC1 à K et on écrit

PC1(K) = C0D0

où C0 est formé des 28 premiers bits de PC1(K) et D0 du reste. puis pour i = 1, · · · , 16 on définit

Ci = LSi(Ci−1)

Di = LSi(Di−1)

et les permutations circulaires LSi vers la gauche permettent de construire les clés de tour Ki, i =

1, · · · , 16.
Ki = PC2(CiDi), i = 1, · · · , 16

Ainsi, pour chaque tour, on utilise une clé différente Ki, i = 1, · · · , 16 de 48 bits obtenue a partir de

la clé initiale K de 64 bits. Voir 2.3.
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C16 D16 PC2

PC2

K16 (48 bits)

LS16 LS16

LS2 LS2

LS1 LS1

...
...

K (64 bits)

C0 (28 bits) D0 (28 bits)

C1 D1 K1 (48 bits)

PC1

Figure 2.3 – Diversification de la clef dans DES

2.4 Étapes de chiffrement

Voir la Figure ??. Soit Un message M de 64 bits. Une clé K de 56 bits. La sortie est un crypto-

gramme C de 64 bits. Voir Figure 2.4.

1) On applique la permutation IP à M ensuite on décompose IP (M) en deux mots L0 (gauche) et

R0 (droite) de 32 bits chacun.

IP (M) = L0R0

.

2) 16 tours de la fonction f sont exécutées (combinaison de substitutions et de transpositions). Les

parties gauches et droites sont modifiées comme il suit pour i = 1 · · · 15

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1,Ki)

. Ri−1 est de 32 bits et Ki est de 48 bits de la clé de tour la sortie de f est de 32 bits. L16 = R15,

R16 = L15 ⊕ f(R15,K16).

3) Enfin, on applique la permutation inverse IP−1 à (R16, L16) pour obtenir le texte chiffré C.
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Texte clair M

IP

L0 R0

L1 = R0 R1=L0 ⊕ f(R0,K1)

K1

b⊕ f

K2

b⊕ f

L2 = R1 R2=L1 ⊕ f(R1,K2)

L15 = R14 R15=L14 ⊕ f(R14,K15)

⊕ f
b

K16

R16=L15 ⊕ f(R15,K16) L16 = R15

IP−1

Texte chiffré C

Figure 2.4 – L’algorithme DES
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2.5 Déchiffrement

Le déchiffrement est effectué par le même algorithme de chiffrement en inversant l’ordre d’utilisation

des clés de tour i.e. K16 en premier, puis K15 etc et enfin K1. Cela est dû au fait que la permutation

finale est l’inverse de la permutation initiale et

Ri−1 = Li

Li−1 = Ri ⊕ f(Li,Ki)

L’algorithme qui engendre les clefs est circulaire, et le décalage se fait vers la droite : si i = 1, 2, 9, ou16

on décale d’une position sinon on décale de deux positions.

2.6 Controverse

Deux faiblesses principales ont été observées dans la conception du DES :

1) Des clés de 56 bits peuvent être trop courtes pour assurer une robustesse suffisante ;

2) Les principes de choix des S-box n’ont complètement été rendus publique : aucune Si-Box n’est

une fonction linéaire ou affine des entrées. La conception des S-box autoriserait la NSA à effectuer

plus rapidement une cryptanalyse. Personne n’a jamais rien trouvé concernant d’éventuelles propriétés

cachées des boites de substitution Les critères de constructions des S − Box ne sont pas connus. La

critique sur la taille de la clé devient plus pertinente avec l’accroissement de la vitesse des ordinateurs.

DES est facilement implémentable en matériel ou logiciel. DES a été largement utilisé dans le

domaine des transactions bancaires et des ministères aux USA. Cryptage de châınes de télévision à

péage. Transmission de données informatiques. Performances Excellentes - cryptage à débits très élevés

(dizaine/ centaine de Mégabits/seconde).

2.7 Attaques de DES

- Clefs ”faibles” : telles que Ek(Ek(x)) = x. Il en existe 4.

- Clefs ”semi-faibles” : ce sont les paires de clefs (K1,K2) dont la deuxième peut décrypter un

message chiffré par la première. Ce sont les clés telles que EK1(EK2(x)) = x. Il existe six paires de ce

genre.

- Clés ”pouvant être faibles” : le problème est similaire aux clés semi-faibles. Il en existe 48.

La recherche exhaustive de la clé correspondante parmi les 256 soit environ 7, 2.1016 possibilités.

Un processeur Intel Pentium III à 666 MHz, peut examiner environ deux millions de clés par

seconde, ce qui implique un temps de recherche moyen de 600 années pour un seul PC.

EFF (Electronic Frontier Fundation) en 1998 a proposée une solution matérielle dans le seul but

de prouver que DES n’est plus du tout sûr. Elle a la possibilité d’examiner 92 milliards de clés par

seconde, ce qui donne un temps de recherche moyen situé entre 4 et 5 jours. En 2003, il suffisait de 4

heures et 120.000 euros.

En 1990, Biham et Shamir, ont présenté une nouvelle attaque, appelée cryptanalyse différentielle.

C’est la première attaque non exhaustive et qui exige moins de temps que l’attaque exhaustive.
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Attaque paires connues / choisies Mémoire Temps

Pré-calcul 1 256 1

Recherche exhaustive 1 1 255

Cryptanalyse linéaire 243 textes 243

Cryptanalyse différentielle 247 textes 247

Table 2.7 – Les meilleures attaques connues contre DES

Une autre attaque théorique importante est la cryptanalyse linéaire. Elle a été proposée par Matsui,

de Mitsubishi Electronics, en 1993. Bien qu’elle ne soit que théoriquement utile, c’est l’attaque la plus

efficace connue à ce jour contre DES.

Il s’est avéré plus tard que les concepteurs de DES savaient ces attaques. [3]

Grâce à la cryptanalyse multi-linéaire, la complexité à été ramené à 239 .

Suite aux failles apparues dans DES, quelques remaniements ont été apportées, mais pas toujours

avec grand succès. Ce fut notamment le cas avec le 2DES. Le principe du 2DES est de chiffrer deux

fois le message avec deux clefs k1 et k2. Il a été prouvé que 2DES était équivalent à un DES avec une

clé de 57 bits, c’est tout.

Attaque par l’homme au milieu

Le 2DES est sensible à l’attaque de l’homme au milieu. Un intrus peut s’introduire dans l’échange

et retrouver la clé utilisée. Alice transmet C = fK2(fK1(M)) à Bob. Si l’homme au milieu, Oscar,

connâıt M et C, il peut construire deux listes de 256 messages

L1 = {fK(M);∀K} et L2 = {f−1
K (C);∀K}

Il cherche ensuite un élément commun. Si R = fK3(M) = f−1
K4

(C), c’est que f−1
K4

(fK4(M)) = C. Oscar

a alors probablement trouvé K3 = K1 et K4 = K2 Ainsi, l’attaque nécessite X = 2n opérations, et

Y = 2n opérations, soit 2.2n = 2n+1 .

2.8 3DES

Grâce à 2 clefs, on pratique 3 opérations :

E(k1,D(k2, E(k1,m)))

C’est équivalent au fait de doubler la taille de la clé (ce qui est une longueur sûre actuellement). Il

existe deux versions de 3DES : la première utilise deux clés, la seconde trois (le dernier chiffrement

utilise une troisième clé).

Il est robuste contre les attaques connues. Mais, il est très lent que le DES car on triple les

opérations.

Modes de chiffrement symétrique Les modes sont des méthodes pour utiliser les chiffrements par

blocs. L’algorithme de chiffrement est combiné à une série d’opérations simples en vue d’améliorer sa

sécurité et/ou de l’adapter à des utilisations précises.
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L0 R0

K

f

L1 R1

Figure 2.5 – Schéma Feistel

2.9 Schéma de Feistel

Feistel, ingénieur chez IBM a dirigé l’équipe qui a conçut DES.

Le schéma qui porte son nom a été décrit en 1973. Voir la Figure 2.5.

obtenir une bijection sur 2n bits à partir d’une fonction non-bijection sur n-bits.

Chiffrement : L1 = R0, R1 = L0 ⊕ f(R0)

Déchiffrement : R0 = L1, L0 = R1 ⊕ f(R0)

La fonction f du schéma de Feistel s’appelle fonction de confusion.

La plupart des algorithmes à clé secrète de la fin du XXè siècle sont basés sur le schémas de Feistel.

Par exemple : DES, Blowfish, Twofish, Camellia, SEED, RC5, OAEP, etc

Il faut que le message chiffré soit aussi aléatoire que possible.

Le schéma de Feistel permet de construire des bijections aléatoires.

Plusieurs attaques sont possibles sur le schéma de Feistel. Les deux principales sont : la cryptanalyse

linéaire et la cryptanalyse différentielle. Ces méthodes ont fait leur preuve sur DES et sur d’autres

algorithmes similaires.

2.10 Exercices

Exercice 1. Calculer Si(110101) où Si est la ieme S-Box du DES et i= 5,8.

Exercice 2. Expliquer pourquoi dans le DES on a la propriété de complémentation : pour tout M et

toute clé k : DESk(M) = DESk(M)

Exercice 3. On considère un diagramme de Feistel à deux rondes sur des châınes de 8 bits avec deux

fonctions f1 et f2.

1. On pose f1(a) := a⊕ 1011 et f2(a) := ā⊕ 0101 pour toute châıne a de 4 bits.

(a) Calculer l’image de la châıne 11010011 par ce diagramme.

(b) Déterminer une châıne de 8 bits dont l’image par le diagramme est elle-même.
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2. La propriété précédente, à savoir il existe une châıne dont l’image par le diagramme de Feis-

tel est elle-même, est-elle vraie pour toutes les fonctions f1 et f2 ? Justifier votre réponse par une

démonstration ou un contre-exemple.

Exercice 4. On utilise pour chiffrer ses données privées le cryptosystème DES, paramétré par une

clé secrète k de 56 bits. Comme 56 bits est bien peu de nos jours, on envisage de rendre plus sûr le

stockage de ses données en chiffrant une seconde fois toutes ses données, avec la clé DES k′ = k + 1

(pour chaque donnée en clair m, la donnée chiffrée est donc c = DESk+1(DESk(m)), où k désigne la

clé).

1. Est-ce une bonne idée ?

2. Discuter les avantages et/ou les inconvénients.

3. On pense à une autre amélioration possible. On va chiffrer une fois avec DES, et une fois avec

AES128. Comme AES128 a besoin de clés de 128 bits, on va paramétrer son chiffrement DES par sa

clé secrète k, et pour son chiffrement AES128 la même clé secrète k, mais avec des zéros pour faire le

remplissage. Est-ce mieux ?

4. Quelle erreur fondamentale commet-on, eu égard aux principes de Kerckhoffs ?
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3.1 Introduction

IDEA (International Data Encryption Algorithm) est un système de chiffrement symmétrique, par

blocs de 64 bits avec une clé de 128 bits, qui tourne sur 8 tours et une transformation finale. IDEA

et basé sur la fusion et la confusion. Mis au point par Xuejia Lai and James L. Massey [1, 2] en

1992 et proposé pour remplacer DES. La vitesse de IDEA avoisine celle de DES. IDEA a couronné

deux versions : la première PES (Proposed Encryption Standard) de 1990 renforcée pour résister

à la cryptanalyse différentielle (1991) pour obtenir la deuxième version IPES (Improved Proposed

Encryption Standard) de 1991.

Pendant quelques années IDEA a servi de standard en remplacement à DES dans certaines appli-

cations. Il a été aussi utilisé par PGP (Pretty Goog Privacy), qui l’a rendu célèbre, pour sécuriser les

courriers e-mails et par openSSL (Secure Socket Layer) pour sécuriser le trafic web.

Le même algorithme est utilisé à la fois pour chiffrer et déchiffrer. IDEA est breveté dans plusieurs

pays, Il est commercialisé par la société suisse MediaCrypt. Mais libre d’utilisation à des fins non

commerciales par tout dans le monde. Les droits d’exploitation sont détenus par Ascom Systec AG.

www.ascom.com.

Contrairement au DES, IDEA n’utilise pas de S-Box et n’utilise pas le schéma de Feistel mais

une autre méthode permettant de produire des fonctions inversibles, propriété essentielle pour le

déchiffrement. Il répond aux exigences de diffusion et de confusion.

IDEA est un algorithme de chiffrement symétrique par blocs de 64 bits, se fait en 8 tours et une

transformation finale et utilisant 52 sous-clefs de la clef initiale de 128 bits.
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Le processus de dérivation de sous-clé en produit 52 de 96 bits chacune.

Il est facilement réalisable en matériel ou en logiciel. Les opérations utilisées dans IDEA sont des

opérations simples de trois groupes algébriques :

1. le ou exclusif (xor) noté ⊕ ;

2. l’addition modulo 216 = 65536 notée ⊞ ;

3. la multiplication modulo 216 + 1 = 65537, (qui est un nombre premier). notée ⊙. Pour cette

multiplication un bloc de 16 bits dont tous les bits sont à 0 est interprété plutôt comme 216 et

non comme 0.

Ces opérations manipulent des sous-blocs de 16 bits.

- IDEA était considéré par les spécialistes comme l’un des meilleurs cryptosystème à clé secrète,

car la longueur de sa clé est élevée (128 bits) et la vitesse de chiffrement et de déchiffrement peut-être

élevée au moyen de circuits spéciaux.

3.2 Séquencement de la clé

IDEA utilise une clef de 128 bits qui sert pour créer 52 sous-clefs, 6 pour chacun des 8 tours et 4

pour la transformation finale.

La clé K = b1b2 · · · b128 de 128 bits est divisée en 8 blocs de 16 bits :

b1b2 · · · b16
︸ ︷︷ ︸

K
(1)
1

b17 · · · b32
︸ ︷︷ ︸

K
(1)
2

· · · b81 · · · b96
︸ ︷︷ ︸

K
(1)
6

b97 · · · b112
︸ ︷︷ ︸

K
(2)
1

b113 · · · b128
︸ ︷︷ ︸

K
(2)
2

Ce sont les 8 premières sous-clefs de IDEA : 6 pour le premier tour et les 2 qui restent sont les

premières sous-clefs du 2e tour. La clé K est ensuite décalées circulairement vers la gauche de 25 bits,

puis divisée, en 8 sous-clefs :

b26b27 · · · b41
︸ ︷︷ ︸

K
(2)
3

· · · b42 · · · b57
︸ ︷︷ ︸

K
(2)
6

b58 · · · b73
︸ ︷︷ ︸

K
(3)
1

b74 · · · b89
︸ ︷︷ ︸

K
(3)
2

les 4 premières sont utilisées dans le 2e tour et les 4 qui restent dans le 3e tour.

La clé est décalée vers la gauche de 25 bits et ainsi de suite jusqu’à obtenir 52 clés. Ces clés forment

8 groupes de 6 sous-clés (un groupe par tour) : K
(i)
1 , K

(i)
2 , K

(i)
3 , K

(i)
4 , K

(i)
5 , K

(i)
6 , i = 1, · · · , 8

et un groupe de 4 clés pour la transformation finale : K
(9)
1 , K

(9)
2 , K

(9)
3 , K

(9)
4 .

Voir la Table des sous-clés de chiffrement.

3.3 Description de IDEA

Le texte clair à chiffrer est découpé en blocs de 64 bits. Chaque bloc est divisé en quatre sous-blocs

de 16 bits : X1, X2, X3, X4. Ce sont les entrées du premièr tour de l’algorithme IDEA. L’algorithme

s’effectue en 8 tours. Voir l’algorithme 3.1.
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tour Sous clefs de chiffrement

1 K
(1)
1 K

(1)
2 K

(1)
3 K

(1)
4 K

(1)
5 K

(1)
6

2 K
(2)
1 K

(2)
2 K

(2)
3 K

(2)
4 K

(2)
5 K

(2)
6

3 K
(3)
1 K

(3)
2 K

(3)
3 K

(3)
4 K

(3)
5 K

(3)
6

4 K
(4)
1 K

(4)
2 K

(4)
3 K

(4)
4 K

(4)
5 K

(4)
6

5 K
(5)
1 K

(5)
2 K

(5)
3 K

(5)
4 K

(5)
5 K

(5)
6

6 K
(6)
1 K

(6)
2 K

(6)
3 K

(6)
4 K

(6)
5 K

(6)
6

7 K
(7)
1 K

(7)
2 K

(7)
3 K

(7)
4 K

(7)
5 K

(7)
6

8 K
(8)
1 K

(8)
2 K

(8)
3 K

(8)
4 K

(8)
5 K

(8)
6

finale K
(9)
1 K

(9)
2 K

(9)
3 K

(9)
4

Table 3.1 – Sous clefs de chiffrement

b b

b b

b

b

X1 X2 X3 X4

K
(1)
1 ⊙ K

(1)
2 ⊞ K

(1)
3 ⊞ K

(1)
4 ⊙

⊕
⊕

K
(1)
5 ⊙ ⊞

⊞ ⊙ K
(1)
6

⊕ ⊕
⊕ ⊕

...
...

...
...

K
(9)
1

⊙ K
(9)
2 ⊞ K

(9)
3 ⊞ K

(9)
4

⊙

Y1 Y2 Y3 Y4

Xi : sous bloc de 16 bits de texte clair

Yi : sous bloc de 16 bits de texte chiffré
K

(j)
i : sous bloc de 16 bits de la clé

⊕ : ou exclusif bit à bit

⊞ : addition modulo 216 d’entiers de 16 bits
⊙ : multiplication modulo 216 + 1 d’entiers de 16 bits

Figure 3.1 – Description de l’algorithme IDEA
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A chaque tour, les Xi sont combinés par les opérations ⊕, ⊞, ⊙ entre eux et avec les six mots de

16 bits de la clef.

À chaque tour la suite d’opérations est la suivante :

1. Etape1 = X1 ⊙K
(i)
1

2. Etape2 = X2 ⊞K
(i)
2

3. Etape3 = X3 ⊞K
(i)
3

4. Etape4 = X4 ⊙K
(i)
4

5. Etape5 = Etape1 ⊕ Etape3

6. Etape6 = Etape2 ⊕ Etape4

7. Etape7 = Etape5 ⊙ K
(i)
5

8. Etape8 = Etape6 ⊞ Etape7

9. Etape9 = Etape8 ⊙ K
(i)
6

10. Etape10 = Etape7 ⊞ Etape9

11. Etape11 = Etape1 ⊕ Etape9 ⇒ X1 du tour suivant

12. Etape12 = Etape3 ⊕ Etape9 ⇒ X3 du tour suivant

13. Etape13 = Etape2 ⊕ Etape10 ⇒ X2 du tour suivant

14. Etape14 = Etape4 ⊕ Etape10 ⇒ X4 du tour suivant

Les deux blocs intérieurs X3 et X4 obtenus sont échangés, sauf lors du dernier tour..

Pour finir, après le huitième tour, on applique une étape supplémentaire :

Y1 = X1 ⊙K
(9)
1 , Y2 = X2 ⊞K

(9)
2 , Y3 = X3 ⊞K

(9)
3 , Y4 = X4 ⊙K

(9)
4 .

Les 4 blocs Y1, Y2, Y3, Y4, forment alors le message chiffré.

3.4 Déchiffrement

Pour déchiffrer le texte, il faut d’abord inverser la dernière opération :

Y1 = Y1 ⊙K−1
1 , Y2 = Y2 −K2, Y3 = Y3 −K3, , Y4 = Y4 ⊙K−1

4 .

Les sous clefs de déchiffrement sont inverses par rapport à l’addition ou par rapport à la multiplica-

tion des sous clefs de chiffrement. (pour les besoins de IDEA, tous les sous blocs constitués uniquement

de zéros représentent 216 = −1 modulo 216 + 1 pour la multiplication et l’inverse de la multiplication

de zéro est donc zéro). Le calcul de ces inverses prend du temps mais on le fait qu’une fois par clef de

(dé)chiffrement. Voir la Table 3.2 des sous-clefs de déchiffrement.

On applique alors les opérations suivantes selon 8 tours, en utilisant les groupes de 6 clés en partant

de la dernière à la première :

1. Etape1 = C1 ⊕ C3 (Etape5 lors du chiffrement)

2. Etape2 = C2 ⊕ C4 (Etape6 lors du chiffrement)

3. Etape3 = Etape1 ⊙ K5 (Etape7 lors du chiffrement)

4. Etape4 = Etape2 + Etape3 (Etape8 lors du chiffrement)
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tour Sous clefs de déchiffrement

1 K
(9)−1

1 −K(9)
2 −K(9)

3 K
(9)−1

4 K
(8)
5 K

(8)
6

2 K
(8)−1

1 −K(8)
3 −K(8)

2 K
(8)−1

4 K
(7)
5 K

(7)
6

3 K
(7)−1

1 −K(7)
3 −K(7)

2 K
(7)−1

4 K
(6)
5 K

(6)
6

4 K
(6)−1

1 −K(6)
3 −K(6)

2 K
(6)−1

4 K
(5)
5 K

(5)
6

5 K
(5)−1

1 −K(5)
3 −K(5)

2 K
(5)−1

4 K
(4)
5 K

(4)
6

6 K
(4)−1

1 −K(4)
3 −K(4)

2 K
(4)−1

4 K
(3)
5 K

(3)
6

7 K
(3)−1

1 −K(3)
3 −K(3)

2 K
(3)−1

4 K
(2)
5 K

(2)
6

8 K
(2)−1

1 −K(2)
3 −K(2)

2 K
(2)−1

4 K
(1)
5 K

(1)
6

Finale K
(1)−1

1 −K(1)
2 −K(1)

3 K
(1)−1

4

Table 3.2 – Sous clefs de déchiffrement

5. Etape5 = Etape4 ⊙ K6 (Etape9 lors du chiffrement)

6. Etape6 = Etape3 + Etape5 (Etape10 lors du chiffrement)

7. Etape7 = C1 ⊕ Etape5 (Etape1 lors du chiffrement)

8. Etape8 = C3 ⊕ Etape5 (Etape3 lors du chiffrement)

9. Etape9 = C2 ⊕ Etape6 (Etape2 lors du chiffrement)

10. Etape10 = C4 ⊕ Etape6 (Etape4 lors du chiffrement)

11. Etape11 = Etape7 ⊙ K−1
1 ⇒ C1 du tour suivant

12. Etape12 = Etape8 − K3 ⇒ C3 du tour suivant

13. Etape13 = Etape9 − K2 ⇒ C2 du tour suivant

14. Etape14 = Etape10 ⊙ K−1
4 ⇒ C4 du tour suivant

Les 4 blocs C1, C2, C3, C4, obtenus après le dernier tour forment alors le message en clair.

3.5 Sécurité de IDEA

La sécurité de IDEA dépend de la confusion et de la diffusion. La confusion est réalisée par le

mixage des trois opérations incompatibles. En effet aucune paire des trois opérations ne satisfait ni la

loi de distribution

a⊞ (b⊙ c) 6= (a⊞ b)⊙ (a⊞ c)

ni la loi d’associativité généralisée

a⊞ (b⊕ c) 6= (a⊞ b)⊕ c

Aussi, les trois opérations sont choisies de façon que le résultat d’une opération n’est jamais utilisé

comme entrée d’une opération de même type. (i.e. un résultat de l’opération ⊕ ne peut être utilisé

dans une autre opération ⊕.)
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La diffusion est réalisée par le fait que chaque sous-bloc résultant dépend de tous les sous blocs

d’entrée et que le nombre minimum d’opérations utilisé dans chaque structure d’addition multiple est

de quatre. De plus chaque entrée et sortie d’une telle structure est une transformation inversible.

IDEA a une clef de 128 bits. L’attaque exhaustive exige 2128 soit 1038 tests. Si on a des processeurs

qui testent 109 clefs par seconde et en utilisant 109 ordinateurs munis de ces processeurs en paralèlle il

faudrait 1013 années, c’est beaucoup plus que l’age de l’univers. Il faudrait 1024 ordinateurs de ce type

pour trouver la clef en 24 h. Mais il n’y a pas assez d’atome de silicium dans l’univers pour construire

toutes ces machines.

Mais alte à d’autres algorithme de cyptanalyse ou d’autres techniques.

Il existe une classe de clefs faibles, qu’un cryptanaliste peut identifier par une attaque à clair choisi.

En héxadécimal une classe de telles clefs est

0000 0000 0X00 0000 0000 000X XXXX X000

X représente n’importe quelle valeur héxadécimale. Mais la probabilité d’engendrer une telle clef

aléatoirement est de 2−96. Très faible.

Mise à part cette faiblesse de clef, jusqu’en 2002 aucune attaque plus rapide que l’attaque exhaustive

n’a été publiée.

En 1996 Bruce Schneier a pensé que ”IDEA est le meilleur algorithme public de chiffrement par

bloc” et le plus sécurisé. Mais en 1999 il ne recommandait plus IDEA à cause de certains progrès dans

sa cryptanalyse d’une par, de sa nature brevetée et de la disponibilité de nouveau algorithmes d’autre

part.
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Chapitre 4

AES : Advanced Encryption Standard
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Version officiele de l’AES est disponible sur [1].

En 1997 un appel d’offre du NIST (National Institute of Standards and technology) est lancé pour

réaliser un cryptosystème appelé AES (Advanced Encryption Standard) destiné à remplacer le DES.

En 1998, suite à une première sélection, 15 projets ont été retenus et après une deuxième sélection, ils

ne sont plus que cinq :

1. MARS (IBM)

2. RC6 (Laboratoires RSA)

3. Rijndael (J. Demen et V. Rijmen)

4. Serpent (E. Biham et al.)

5. Twofish (B. Schneier et al.)

En 2000 le projet Rijndael (prononcer Raindal ) est déclaré vainqueur par le NIST, il devient alors

l’AES, donc le successeur du DES. Rijndaelest conçu par Joan Daemen, et Vincent Rijmen, deux

chercheurs Belges, docteurs de l’université de K. U. Leuven en 1995 et 1997 respectivement.
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Rijndael est un système de chiffrement symmétrique par blocs. Rijndael n’utilise pas le schéma de

Fiestel. La longueur de bloc à chiffrer est variable, elle peut être de 128, 192 ou 256 bits. La clé est aussi

de longueur variable, 128, 192 ou 256 bits. Rijndael est réalisé en 10, 12 ou 14 tours (respectivement)

selon la longueur de la clé.

Par contre, le système de chiffrement standard AES retient uniquement la longueur de bloc qui est

fixée à 128 bits et utilise des longueurs de clé variables, 128, 192 ou 256 bits.

IL est facile d’implémenter l’AES aussi bien sous forme logicielle que matérielle.

Trois critères principaux ont été respectés dans sa conception : Résistance face à toutes les attaques

connues notamment les attaques différentielle et linéaire , rapidité et simplicité dans la conception.

L’AES est un standard, libre d’utilisation, non breveté.

Parmi les standards commerciaux utilisant l’AES : les standards de sécurité de l’Internet IPsec,

TLS, Wi-Fi IEEE 802.11i, le protocole SSH, le téléphone par Internet Skype et d’autres. Actuellement

aucune attaque n’est connue hors l’attaque exhaustive.

En 2003, le NSA (National Security Agency) a autorisé l’utilisation de l’AES pour chiffrer les

documents classés niveau ”SECRET” avec une clé de n’importe quelle longueur, et les documents

classés ”TOP SECRET” avec une clé de longueur 192 ou 256 bits.

4.1 Outils mathématiques

La description de cet algorithme utilise le corps de Galois F28 où l’essentiel des calculs est effectué.

Rappelons que si p est un nombre premier et r un entier positif, alors il existe un corps fini d’ordre

pr donné par

Fpr = {a0 + a1t+ · · ·+ ar−1t
r−1/a0, a1, · · · , ar−1 ∈ Zp} = Zp[x]/(P (x))

où P (x) ∈ Zp[x] est un polynôme irréductible unitaire de degré r et t vérifie P (t) = 0.

L’AES utilise le corps de Galois F28 défini par le polynôme

P (x) = x8 + x4 + x3 + x+ 1 ∈ Z2[x] (4.1)

La multiplication dans Fpr est la multiplication usuelle de polynômes modulo P (x).

4.1.1 Représentation polynomiale et hexadécimale des octets

Un octet B = b7b6b5b4b3b2b1b0, est identifié au polynôme

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 ∈ F28 = Z2[x]/(P (x)) (4.2)

L’octet B s’écrit aussi en format hexadécimale en écrivant la valeur hexadécimale des 4 premiers

bits suivies de celles des 4 derniers bits. Inversement, le passage de l’écriture hexadécimale en binaire

consiste à écrire chaque chiffre hexadécimal sur 4 bits.

Les opérations de L’AES sont effectuées dans le corps F28 ci-dessus dont on identifie ses polynômes

aux nombres hexadécimaux qui sont, à leur tour, convertis en nombres binaires.
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Par exemple : 0xC3= 11000011 représente le polynôme x7+x6+x+1 et 0xE0= 11100000 représente

le polynôme x8 + x7 + x6 et on a 0xC3 ⊕ 0xE0=23=100011.

La somme de polynômes revient à xorer les coefficients de même monôme.

Important : dans la suite les nombres hexadécimaux, les octets doivent être perçus comme des

polynômes.

Par exemple le polynôme P (x) ci-dessus s’écrit en hexadécimal 0x11B.

L’ensemble des 256 octets muni de l’opération ⊕ et de la multiplication modulo P (x) est un corps

isomorphe à F28 .

Étapes de l’algorithme : la figure montre les différentes étapes de l’algorithme AES. Il est formé d’un

tour initial, puis de tours standards et d’un tour final. Quatre opérations différentes sont nécessaires

pour réaliser ces rondes et la diversification de la clef.

Représentation polynomiale des mots (1 mot=4 octets) Auparavant pour représenter des octets

nous avons utilisé les polynômes de Z2[x]. Maintenant pour représenter un mot (4 octets ou 32 bits)

nous utilisons un polynôme de degré au plus 3 à coefficients dans l’anneau F28 = Z2[x]/(x
4 + 1).

L’addition est usuelle.

La multiplication est (modulaire) effectuée modulo x4 + 1.

Le polynôme x4 + 1 n’est pas irréductible dans F28 [x], et la multiplication par a(x) n’est pas

nécessairement inversible. Mais le polynôme a(x) est inversible.

4.2 Présentation du bloc à chiffrer et de la clé

L’AES chiffre par bloc de 128 bits. Soit b0b1b2 · · · a127 un tel bloc. On le découpe en octets et on le

note B0B1B2 · · ·B15 On appelle état, la présentation d’un tel bloc sous forme de matrice à 4 lignes.









B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15









Soit k0k1 · · · kn une clé de longueur 128, 192 ou 256 bits. On la découpe en octets et on la note

K0K1K2 · · ·KN où N = 15, 23 ou 31 la présentation d’un tel bloc sous forme d’une matrice toujours

de 4 lignes et de Nc = (longueurdublocenbits)/32 = 4, 6 ou 8 colonnes (respectivement). Par exemple,

une clé de 128 bits est représentée par la matrice suivante où Nc = 4









K0 K4 K8 K12

K1 K5 K9 K13

K2 K6 K10 K14

K3 K7 K11 K15








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CHAPITRE 4. AES : ADVANCED ENCRYPTION STANDARD 44

nombre de colonne nombre de tour

clé de 128 4 10

clé de 192 6 12

clé de 256 8 14

Table 4.1 – Nombre de tour de l’AES pour chaque longueur de clé

une clé de 192 bits est représentée par la matrice suivante où Nc = 6









K0 K4 K8 K12 K16 K20

K1 K5 K9 K13 K17 K21

K2 K6 K10 K14 K18 K22

K3 K7 K11 K15 K19 K23









Si on note par Nr le nombre de tour à effectuer par L’AES pour chiffrer, on a les possibilités

suivantes :

Exemple

bloc F6 12 A8 98 05 28 20 7A E0 5A 24 F6 88 8D 35 32

clef 21 A0 22 07 E0 08 05 F3 20 C2 01 B1 04 D3 A8 19

bloc=









F6 05 E0 88

12 28 5A 8D

A8 20 24 35

98 7A F6 32









clef=









21 E0 20 04

A0 08 C3 D3

22 05 01 A8

07 F3 B1 19









On a Nk = Nb = 4

4.3 Opération de l’algorithme AES

Le système de chiffrement AES opère sur les états (matrice à 4 lignes et Nc = longueur(bloc)/32

colonnes). Le chiffrement consiste en une addition initiale de clé appelé AddRoundKey suivie de Nr− 1

tours et chaque tour est formé de 4 étapes :

1. SubBytes : substitution d’octets par d’autres choisis dans une boite S-Box ;

2. ShiftRows : transposition, chaque terme de la matrice est décalé cycliquement à gauche d’un

certain nombres de colonnes ;

3. MixColomns : produit matriciel sur chaque colonne (pris comme vecteur) de la matrice ;

4. AddRoundKey : combine par addition chaque octet avec l’octet correspondant dans une clé de

ronde obtenue par diversification de la clé de chiffrement.

Enfin, une ronde finale nommée FinalRound est appliquée (c’est une ronde sans MixColomns )

4.3.1 L’opération AddRoundKey

C’est une simple opération XOR terme à terme dans F28 entre la matrice état (state) et la clef de

la ronde.
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a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

k00 k01 k02 k03

k10 k11 k12 k13

k20 k21 k22 k23

k30 k31 k32 k33

⊕

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

Figure 4.1 – L’opération AddRoundKey

4.3.2 L’opération SubBytes

Dans cette opération chaque octet des sous-blocs est substitué selon la table S-Box. Voir Figure

4.2 Cette opération augmente la non-linéarité des données. Elle agit sur chaque état.

Elle est similaire aux S−box utilisées dans l’algorithme DES. AES a un seul S−box qui est donné.

Il est connu pour résister à la cryptanalyse linéaire et différentielle connues.

Contairement aux S-Box de DES, la conception de S-box de l’AES est publique : celle-ci est inver-

sible, et construite par la composition de deux transformations :

1) l’inverse multilicatif de chaque élément est calculé dans F28 (’00’ est son propre inverse par conven-

tion) ; voir la table des inverses 4.3. L’inverse de l’octet xy est la valeur du tableau se trouvant à

l’intersection de la ligne x et de la colonne y.

2) puis on applique la transformation affine suivante sur chaque octet résultant de l’opération précédente

S-Box est la composée S = f ◦ I des applications I : F28 −→ F28 I(0) = 0 et I(x) = x−1 pour

x 6= 0 et la fonction affine : f : (F28)
8 −→ (F28)

8 f(x) = Ax+B donnée matricielement par
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B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

B4 B8 B12 B16

B1 B5 B9 B13

B6 B10 B14 B2

B11 B15 B3 B7

B16 B4 B8 B12

Bi Bj

S

Figure 4.2 – Fonction Sub-Bytes

f(x0, x1, . . . , x7) =



















1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1





































x0

x1

x2

x3

x4

x5

x6

x7



















+



















1

1

0

0

0

1

1

0



















mod 2

Si x et y représentent respèctivement le premier et le deuxième unité d’un octet hexadécimal d’un

état alors la transformée par SubBytes du nombre xy est le nombre se trouvant à l’intersection de la

ligne x et de la colonne y de la table S-Box.

Par exemple pour ’d9’ : x = d et y = 9.

Exemple d’action de SubBytes Soit l’état

s =









F6 05 E0 88

12 28 5A 8D

A8 20 24 35

98 7A F6 32









alors S −Box(s) =









42 6B E1 C4

C9 34 BE 5D

C2 B7 36 96

46 DA 42 23









4.3.3 Opération ShiftRows

Le rôle de cette opération est d’augmenter la diffusion. Sous l’action de cette opération chaque

ligne li, i = 0, · · · , 3 d’un état, est circulairement déplacée vers la gauche de ci cases i = 0, · · · , 3
dépendant de la longueur Nb du bloc d’entrée et donné par :

Décalage des lignes dans ShiftRows en fonction de Nb

Cette opération augmente la diffusion des données dans le ronde en séparant les octets à l’origine

consécutif.

Exemple d’action de ShiftRows
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Ronde Key 0

Ronde Key i

Ronde Key Nr

i← i+ 1

Nr − 1 fois

Texte clair

AddRoundKey

i← 1

SubBytes

ShiftRows

MixColumn

AddRoundKey

i < Nr − 1

SubBytes

ShiftRows

AddRoundKey

Texte chiffr

Figure 4.3 – L’algorithme AES

0 1 2 3 4
0

1

2

3

4

8 9 10 11 12
0

1

2

3

4

pas de décalage c0 = 0

décalage de c1 = 1

décalage c2 = 2

décalage c3 = 3

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

B4 B8 B12 B16

B1 B5 B9 B13

B6 B10 B14 B2

B11 B15 B3 B7

B16 B4 B8 B12

Figure 4.4 – ShiftRows dans le cas Nb=4 et (c0, c1, c2, c3) = (0, 1, 2, 3)
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hex y

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

x 7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 4.2 – S-Box de l’algorithme AES

hex y

0 1 2 3 4 5 6 7 8 9 a y c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

x 7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

Table 4.3 – S-Box inverse de l’algorithme AES

Nb c0 c1 c2 c3

4 0 1 2 3

6 0 1 2 3

8 0 1 3 4

Table 4.4 – Nombre de décalages en fonction de Nb
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s =









F6 05 E0 88

12 28 5A 8D

A8 20 24 35

98 7A F6 32









alors s’=









F6 05 E0 88

28 5A 8D 12

24 35 A8 20

32 98 7A F6









4.3.4 Opération MixColumns

La combinaison de ShiftRows et MixColumns fait qu’après seulement 3 tours chaque octet dépend

de tous les 16 octets du texte clair.

C’est une opération linéaire sur chaque colonne d’un état qui est considérée comme un polynômes à

coefficients dans F28 . Chaque colonne, vue comme polynôme, est multipliée (multilication modulaire)

par le polynôme

a(x) = 03Hx3 + 01Hx2 + 01Hx+ 02H mod (x4 + 1)

Noter que xj mod (x4 + 1) = xj mod 4.

La multiplication modulo x4 + 1 est notée ⊗, elle n’est pas nécessairement inversible. Mais le

polynôme a(x) est choisi car il est inversible. En général a(x) = a3x
3 + a2x

2 + a1x + a0 et b(x) =

b3x
3 + b2x

2 + b1x+ b0 .

d(x) = a(x)⊗ b(x)

d(x) = d3x
3 + d2x

2 + d1x+ d0

d0 = a0b0 ⊕ a3b1 ⊕ a2b2 ⊕ a1b3

d1 = a1b0 ⊕ a0b1 ⊕ a3b2 ⊕ a2b3

d2 = a2b0 ⊕ a1b1 ⊕ a0b2 ⊕ a3b3

d3 = a3b0 ⊕ a2b1 ⊕ a1b2 ⊕ a0b3

La multiplication par un polynôme fixe a(x) peut s’écrire matriciellement









d0

d1

d2

d3









=









a0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

















b0

b1

b2

b3









Cette opération peut s’écrire matriciellement, si b = b3b2b1b0 est une colonne d’un état alors









C0

C1

C2

C3









=









02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

















B0

B1

B2

B3

















C4

C5

C6

C7









=









02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

















B4

B5

B6

B7









etc
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B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

C0 C4 C8 C12

C1 C5 C9 C13

C2 C6 C10 C14

C3 C7 C11 C15

B

B

B

B

C

C

C

C

⊗a(x)

Figure 4.5 – Transformation MixColumn

L’inverse de a(x) est le polynôme

a−1(x) = 0BHx3 + 0DHx2 + 09Hx+ 0EH

On a

a−1(x)a(x) = 1 mod x4 + 1

Exemple : ?

4.4 Description de l’AES

4.5 Dérivation de clés de tour

Le nombre de sous clé est égale au nombre de tours plus un. Une sous clé utilisé à la fin.

Toutes les sous clé sont de 128 bits. Quelque soit la longueur de la clé.

Pour une clé de 128 bits il y a 10 tours et 11 clés de tour.

Pour une clé de 192 bits il y a 12 tours et 13 clés de tour.

Pour une clé de 256 bits il y a 14 tours et 15 clés de tour.

À partir d’une clé K (de longueur 128, 192 ou 256) on génère Nc(Nr + 1) mots.

L’opération KeyExpansion permet de transformer la clé de chiffrement K (de longueur 4Nk octets)

en une clé étendue W de 4Nc(Nr + 1) octets. Ainsi on obtient Nr + 1 clefs de tour et chaque tour

utilise une clé de 4Nc octets une et une seule fois.

Voir Figure 4.5.

K et W sont des successions de colonnes, chacune de 4 octets. On note par ki (resp. wi) la (i+1)eme

colonne de K (resp. W ).

Les sous clés sont calculées récursivement. Elles sont rassemblé dans un tableau w formé de mots

(1mot=32 bits).

Production de sous clés d’une clé 128 Soit K0,K1, . . . ,K15 les octets formant une clé de 128 bits.

Les 11 sous clés sont stockées dans un tableau W de 44 octets. Chaque W [i] est un mot c’est à

dire de longueur 32 bits ou 4 octets.

K0 = W [0]W [1]W [2]W [3] = K0K1 · · ·K15
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Figure 4.6 – Dérivation des clés de tours d’une clé de 128 bits

n’est rien d’autre que la clé initiale de 128 bits Les autres éléments du tableau W sont calculés comme

il suit

W [4i] = W [4(i− 1)] + g(W [4i− 1]) pour i = 1, . . . , 10

W [4i+ j] = W [4i+ j − 1] +W [4(i− 1) + j], pour i = 1, . . . , 10etj = 1, 2, 3.

La fonction g est non linéaire : g : F8
2 × F

8
2 × F

8
2 × F

8
2 −→ F

8
2 × F

8
2 × F

8
2 × F

8
2

RC[1] = x0 = (00000001)2 ,

RC[2] = x1 = (00000010)2 ,

RC[3] = x2 = (00000100)2 ,

...

RC[10] = x9 = (00110110)2 .
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La fonction g() ajoute de la non-linéarité à la création des sous clés et augmente la sécurité de l’AES.

La fonction g est une composition d’une permutation des octets suivie de S-Box appliqué à chaque

octet en plus de RC[i] xoré avec le premier octet.

K1 = W [4]W [5]W [6]W [7]

...

K2 = W [8]W [9]W [10]W [11]

Exemple :

K =









k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3









opérations :

S1(wi−1) est une permutation circulaire de wi−1 définie par S1([a0, a1, a2, a3]) = [a1, a2, a3, a0] où

[a0, a1, a2, a3] est un mot de 4 octets.

SubWord est une opération qui agit sur des mots de 4 octets et applique S-Box à chaque octet.

La table de constante de rondes Rcon[i] est indépendante de Nk. Rcon[i] est définie récurssivement

par Rcon(i) = [xi−1 mod g(x), 00, 00, 00] où xi−1 est la puissance de x dans F28 .

Les Nk premières colonnes de K sont recopiés dans les Nk premières colonnes de W sans modifi-

cation. C’est à dire wi = ki pour i = 0, · · · , Nk − 1.

Pour Nk ≤ 6 on a :

wi =

{

wi−Nk ⊕ SubWord(S1(wi−1))⊕ rcon( i
Nk ) if i mod Nk = 0

wi−Nk ⊕ wi−1 if i mod Nk 6= 0

Pour Nk > 6 on a :

wi =







wi−Nk
⊕ SubWord(S1(wi−1))⊕ rcon( i

Nk
) if i mod Nk = 0

wi−Nk
⊕ SubWord(wi−1) if i mod Nk = 4

wi−Nk
⊕ wi−1 sinon

Clé initiale K = K0 K1 K10

w0 w1 w2 w3 w4 w5 w6 w7 · · · w40 w41 w42 w43

À partir de la matrice W on peut extraire facilement la RoundKeys. Les Nb premières colonnes

de W forment la clé pour la première ronde, Les Nb colonnes suivantes de W forment la clé pour la

deuxime ronde, etc

Nk mots : longueur de la clé Nr mots : nombre des rondes Nb(Nr+1) mots : taille de la clé étendue

Constants: int Nb = 4;

Inputs : int Nk = 4, 6, or 8; // the number of words in the key

array key of 4*Nk bytes or Nk words // input key
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Figure 4.7 – Dérivation des clés de tours d’une clé de 192 bits

Nk Nr Nb(Nr + 1)

4 10 44

6 12 52

8 14 60

Table 4.5 – Nombres de sous-clés
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Figure 4.8 – Dérivation des clés de tours d’une clé de 256 bits
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K0 K1 K2 K3 K4 K5 K6 K7 K8

⊕

· · ·

Ki = Ki−Nk
⊕Ki pour i mod Nk = 0

Figure 4.9 – Génération des sous clés pour i mod Nk 6= 0

K0 K1 K2 K3 K4 K5 K6 K7 K8

⊕
f

· · ·

Ki = Ki−Nk
⊕ f(Ki) pour i mod Nk = 0

où f(Ki) = SubWord ◦ σ(Ki)⊕Rcon(i/Nk)
Figure 4.10 – Génération des sous clés pour i mod Nk = 0

Output : array w of Nb*(Nr+1) words or 4*Nb*(Nr+1) bytes // expanded key

Algorithm:

void KeyExpansion(byte[] key, word[] w, int Nw) {

int Nr = Nk + 6;

w = new byte[4*Nb*(Nr+1)];

int temp;

int i = 0;

while ( i < Nk) {

w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]);

i++;

}

i = Nk;

while(i < Nb*(Nr+1)) {

temp = w[i-1];

if (i % Nk == 0)

temp = SubWord(RotWord(temp)) ^ Rcon[i/Nk];

else if (Nk > 6 && (i%Nk) == 4)

temp = SubWord(temp);

w[i] = w[i-Nk] ^ temp;

i++;

}

}
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

xi 01 02 04 08 10 20 40 80 1b 36 6c d8 ab 4d 9a

Table 4.6 – puissances de x = 0x02

4.6 Evaluation de l’ AES

S-Box n’a ni point fixe ni point opposé ni point fixe inverse.

MixColomn combiné avec ShiftRows permet après plusieurs ronde que chaque bit de sortie dépende

de tous les bits en entrée.

La fonction x 7→ x−1 est la meilleure connue contre les attaques linéaire et différentielle.

On a 3.4 × 1038 clés de 128-bit, 6.2 × 1057 clés de 192-bit, et 1.1 × 1077 clés de 256-bit possibles

Pour DES 7.2x1016 clés différentes possibles.

Si une machine pourrait casser une clé DES en une seconde (c-à-d calcule 255 clés par seconde),

alors il faudrait 149 mille milliards d’années pour cracker une clé AES. L’age de l’univers est de 20

milliards d’années au maximum.

4.7 Exercices

Exercice 1. Le corps F28 étant défini par le polynôme irréductible P (x) = x8 + x4 + x3 + x + 1.

Calculer :

1. 09+A0, 45+25, E1+C1

2. 03x76, 02x25, 33x12

3. x4+x+1
x7+x6+x3+x2 .

4.

Exercice 2. Soit b = b7x
7 + . . .+ b1x+ b0. Calculer dans F28 les produits 01xb, 02xb, 03xb.

Exercice 3. Trouver dans F28 les inverses de 75, 1A, C1, 10 et vérifier.

Exercice 4. Soit S l’opération S-Box de l’AES. Utiliser sa table pour calculer S(10), S(45), S(1C).

Exercice 5. Soit S−1 l’opération inverse de S-Box de l’AES. Utiliser sa table pour calculer S−1(1E),

S−1(C5), S−1(2C).

Exercice 6. Écrire en binaire les éléments de F28 suivants : RC[8] = x7, RC[9] = x8, RC[10] = x9.

Exercice 7. Calculer S(88), S(54) où S est la S-Box de l’AES.

Exercice 8. Calculer le résultat du premier tour de l’AES au message M=MASTERCRYPTOSINF

et la clé k=MASTERCRYPTOSINF.

Exercice 9. Montrer que l’inverse du polynôme a(x) = 03HX3+01HX2+01HX+02H mod (X4+1)

considéré comme un polynôme à coefficients dans F28 est b(x) = 0BHX3 + 0DHX2 + 09HX + 0EH

Master C2SI - 2023-24 Introduction à la cryptographie E. M. Souidi
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Exercice 10. Dans le corps F28 on pose RC[1] = 1 et pour j ≥ 2, RC[j] = 2RC[j − 1]. Calculer

RC[j] pour j = 1, 2, · · · , 12.

Exercice 11. Soit la clé K=11 00 00 00 11 00 00 00 11 00 00 00 11 00 00 00 qu’on veut utiliser pour

chiffrer des blocs de taille 128 bits avec l’AES. Calculer ki pour i = 0, 1, · · · , 7

Exercice 12. On considère l’AES-128 et la clé

2c 7f 16 17 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

Calculer wi, i = 0, · · · , 7.
Utilisez cette clé pour donner le résultat de la première ronde , du chiffrement de

32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34

On donne le résultat sous forme matricielle.

Exercice 13. On rappelle le polynôme irréductible P (x) = x8 + x4 + x3 + x + 1 sur F2 utilisé pour

AES. Quel est l’inverse de x7 mod P (x) ? Calculer x42 mod P (x) .

Exercice 14. En utilisant la tables des inverse dans le corps F28 quel est l’inverse de 0x83 ? Vérifier.
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5.9.6 La méthode GNFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.10 Résolution du problème du logarithme discret . . . . . . . . . . . . . . . . . 76
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Proof by poem :

The RSA Encryption Algorithm

Take two large prime numbers, q and p.

Find the product n, and the totient φ.

If e and φ have GCD one

and is e’s inverse, then you’are done !

For sending m raised to the e

reduced mod n gives secre-c.

Daniel G. TREAT, National Security Agency

Mathematics Magazine, Vol 75 N 4, October 2002.

RSA est un crypto-système à clef publique, inventé en 1978 par R. Rivest, A. Shamir et L. Adleman

(dont les initiales forment RSA) du MIT. Mais leur objectif initial était d’établir que l’idée d’un crypto-

système à clef publique que W. Diffie et M. Hellman venaient d’inventer en 1976 était une impossibilité

logique.

RSA est basé sur la diffuclté de factoriser un nombre qui est le produit de deux grands nombres

premiers. RSA est aussi utilisé pour les signatures numériques.

5.1 Description de RSA

5.1.1 Outils mathématiques

5.1.2 Indicatrice d’Euler

L’indicatrice d’Euler est une fonction φ : N
∗ ←→ N

∗, définie par φ(n) = card{1 ≤ m ≤
n / pgcd(m,n) = 1}.

Exemples : φ(4) = card({1, 3}) = 2, φ(8) = card({1, 3, 5, 7}) = 4, φ(1) = card({1}) = 1, φ(9) =

card({1, 2, 4, 5, 7, 8}) = 6,

Si p est un nombre premier alors φ(p) = card({1, 2, . . . , p− 1}) = p− 1,

Soit n ∈ N
∗, alors φ(n) est égal : – au nombre d’éléments inversibles de l’anneau Z/nZ ;

– au nombre de générateurs d’un groupe cyclique d’ordre n ;

La fonction φ(n) est multiplicative, c’est-à-dire que si m,n ∈ N
∗ premiers entre eux, alors φ(m.n) =

φ(m)φ(n).

Le calcul de l’indicateur d’Euler est donc important. Voici quelques propriétés permettant de le

calculer :
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Si p est premier et α ≥ 1 alors

ϕ(p) = p− 1 (5.1)

ϕ(pα) = pα − pα−1 (5.2)

ϕ(nm) = ϕ(n)ϕ(m) si n,m ∈ N et pgcd(n,m) = 1 (5.3)

En particulier, les propriétés précédentes permettent de calculer l’indicateur d’Euler ϕ(n) connais-

sant la décomposition en facteurs premiers de n. Ainsi on a

ϕ (pα1
1 ) . . . ϕ (pαr

r ) =
(

pα1
1 − pα1−1

1

)

× · · · ×
(
pαr
r − pαr−1

r

)
= n

(

1− 1

p1

)

. . .

(

1− 1

pr

)

.

On a aussi les propriétés suivantes :

n =
∑

d|n

ϕ(d)

ϕ(n) =
∏

p|n

(

1− 1

p

)

avec p premier.

5.1.3 Description de RSA

Alice, Destinataire, :

- choisit deux grands nombres premiers p et q. 1 et calcule n = pq .

- choisit un nombre d (grand, à l’aide de l’algorithme d’Euclide) et premier avec (p−1)(q−1) =
ϕ(n) (fonction d’Euler).

- calcule e inverse de de d mod ϕ(n) (à l’aide de l’algorithme d’Euclide).

- garde soigneusement secrets p, q et d

- envoie publiquement à l’émetteur (e, n), c’est la clef publique.

Bob, émetteur :

- Transforme le message M à émettre en un nombre 2 de Zn (Il découpe éventuellement le

texte en bloc)

- crypte par la relation C = M e mod n.

- envoie le message au destinataire.

Destinataire : déchiffre le message C par

Cd mod n = M

Exemple 5.1.1 Prenons 2 nombres premiers au hasard : p = 29, q = 37. On calcul n = pq = 29∗37 =

1073.

On choisit e au hasard tel pgcd(e, (p− 1)(q− 1)) = 1. (p-1)(q-1) = (29-1)(37-1) = 1008. On prend

e = 71. On choisit d tel que 71*d mod 1008 = 1 On trouve d = 1079

1. plus de 100 chiffres chacun à générer par les algorithmes probabilistes

2. par exemple espace = 00, A=01, B=02 etc
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On a maintenant les clés :

- La clé publique est (e,n) = (71,1073) (=clé de chiffrement)

- La clé privée est (d,n) = (1079,1073) (=clé de déchiffrement)

On va chiffrer le message ’HELLO’. On va prendre le code ASCII de chaque caractère et on les

met bout à bout : m = 7269767679.

Ensuite, on découpe le message en blocs qui comportent moins de chiffres que n. On va donc

découper notre message en blocs de 3 chiffres : 726 976 767 900 (quitte à complèter par des zéros)

Ensuite on encrypte chacun de ces blocs :

72671 mod 1073 = 436

97671 mod 1073 = 822

76771 mod 1073 = 825

90071 mod 1073 = 552

Le message encrypté est 436 822 825 552. On peut le décrypter avec d :

4361079 mod 1073 = 726

8221079 mod 1073 = 976

8251079 mod 1073 = 767

5521079 mod 1073 = 900

C’est à dire la suite de chiffre 726976767900. On retrouve notre message en clair 72 69 76 76 79 :

’HELLO’.

5.2 Démonstrations mathématiques

Dans cette section, on montre ??, comment inverser mod ϕ(n), calculer de grandes puissances

modulaire, générer de grands nombres.

5.2.1 Démonstration

On démontre que Cd = (M e)d = M mod n. On distingue deux cas :

Si M est premier avec n :

On a (M e mod n)d mod n = Mde mod n or de ≡ 1 mod ϕ(n) càd de = 1 + kϕ(n) où k est un

entier.

Or on sait que si n est un entier et a un entier premier avec n. alors aϕ(n) ≡ 1 mod n.

Puisque M est premier avec n on a Mϕ(n) ≡ 1 mod n d’où

Cd = Mde = Mkϕ(n)+1 = 1.M mod n = M mod n.

Si M est non premier avec n = pq :

Dans ce cas M est multiple de p ou de q. Supposons alors que M = pαm où m ∈ N et α est le plus

grand entier vérifiant cette relation.

m n’est multiple ni de p ni de q d’où m est premier avec n. D’où
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Mde = (pαm)de = pαde.mde mod n = pαdem mod n

Or pαde ≡ pα mod p et pαde ≡ pα mod q car pϕ(q) = pq−1 ≡ 1 mod q or de = 1 + kϕ(n) on obtient

pde = p1+k(p−1)(q−1) = p.1k(p−1) ≡ p mod q d’où en élevant à la puissance p : pαde = pα mod q,

La différence pαde − pα est multiple de q et de p donc multiple de pq d’où d’après le lemme de

Gauss pαde ≡ pα mod n et donc

Cd = Mde ≡ pαdem mod n = pαm mod n = M mod n

5.2.2 Inversion modulo (p− 1)(q − 1)

On sait que a est inversible dans l’anneau Z/nZ si et seulement si a est premier avec n.

Si a et n sont premiers entre eux alors il existe deux entiers u et v tels que ua+ vn = 1. D’où en

modulo n on conclut que : ua ≡ 1 mod n.

On utilise l’algorithme d’Euclide étendu pour calculer u.

Inversion modulo (p− 1)(q − 1) = ϕ(n)

Il est facile de trouver un nombre d premier avec ϕ(n) en le choisissant au hasard et vérifiant à

l’aide de l’algorithme d’Euclide.

Puis on doit chercher l’inverse e de d mod ϕ(n) c’est à dire de = 1 mod ϕ(n) ou de ≡ 1 + kϕ(n)

où k ∈ N. C’est rien d’autre que la relation de Bezout. L’algorithme d’Euclide

ϕ(n) = q1d+ r1

d = q2r1 + r2

...

rn−2 = qnrn−1 + rn

donne rn = 1 puisque d et ϕ(n) sont premiers entre eux. En partant de la dernière équation

1 = rn−2 − qnrn−1

on remplace rn−1 par rn−3 − qn−1rn−2 et on remonte

Deux choses à démontrer :

- il existe au moins un couple deux entiers a et b inférieurs à n tels que ab ≡ 1 mod ϕ(n) ;

- pour tout m < n, (mb)a = m mod n.

Lemme 5.2.1 Soit a ∈ Zn. a est inversible dans Zn si et seulement si pgcd(a, n) = 1

Preuve : Inversement supposons pgcd(a, n) > 1. Puisque ab ≡ 1 mod n, il existe k ∈ Z tel que

ab+nk = 1 mod n. D’après le théorème de Bezout a et n sont premiers entre eux. Ce qui est absurde.

Supposons pgcd(a, n) = 1 alors d’après le théorème de Bezout il existe u et v dans Z tels que

au+ nv = 1 d’où au = 1 mod n. Il suffit de prendre b = u mod n

L’unicité est évidente.
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En appliquant le lemme on a : Pour a tel que 0 < a < (p− 1)(q− 1) et premier avec (p− 1)(q− 1),

il existe un b (unique) tel que 0 < b < n et ab = 1 mod (p−1)(q−1). L’existence d’un tel a est triviale

par exemple : 1 et (p − 1)(q − 1)− 1.

En prenant a et b comme ci-dessus on obtient

Proposition 5.2.2 Pour tout m ∈ Zn : (mb)a ≡ m mod n.

Preuve :

On montre d’abord que (mb)a = m mod p et (mb)a = m mod q.

Si p divise m : (mb)a = m = 0 mod p

Si q divise m : (mb)a = m = 0 mod q

Si m n’est ni mulitple de p ni mulitple de q on a pgcd(m, p) = pgcd(m, q) = 1 et :

(mb)a = mba = m1+k(p−1)(q−1) = m(m(p−1)(q−1))k

Le petit théorème de Fermat donne alors : m(p−1) ≡ 1 mod p d’où m(p−1)(q−1)k = 1 mod p donc

(mb)a = m mod p.

et on montre de même : m(q−1) = 1 mod q donc (mb)a = m mod q

Enfin, (mb)a = m mod pet(mb)a = m mod q implique (mb)a = m(modn).

(mb)a = m mod p d’où p divise (mb)a − m d’où kp = (mb)a − m (mb)a = m mod q d’où q

divise (mb)a −m d’où k′q = (mb)a − m D’où kp = k′q ce qui entrâıne p divise k′ et q divise k car

pgcd(p, q) = 1 (lemme de Gauss). D’où k = k”q, puis finalement kp = k”qp = (mb)a − m et donc

pq = n divise (mb)a −m

5.2.3 Algorithme d’Euclide étendu

L’algorithme d’Euclide donne le pgcd de deux nombres. En le prenant à l’envers, on peut l’utiliser

pour trouver les coefficients de Bézout.

Exemple 5.2.3 pgcd(38, 17) = 1

38 = 2× 17 + 4

17 = 4× 4 + 1

4 = 2× 2 + 0. D’où

1 = 17− 4× 4 = 17− 4× (38− 2× 17) = 9× 17 − 4× 38.

5.2.4 Calcul des puissances modulo n

Comment calculer 12345610000 mod 456456789789 ? par exemple.

Calcul de z = M e mod n. On note e(i) le ième bit dans la décomposition binaire de

e =
t−1∑

i=0

e(i)2i

On décompose e en base 2 : e =
∑t−1

i=0 e(i)2
i Il y a [ log2n ] opérations.

Ce qui revient à calculer pour i = 1 · · · t
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Algorithm 1 Algorithme
z :=1 ;

Pour i=t-1 à 0 faire

z :=z2 mod n ;

si e(i)=1 alors z :=z.M mod n finsi

finpour

a2
i
mod n = x2i−1 = xi

ae = a
∑t−1

i=0 e(i)2i =
∏

ae(i)2
i

=
∏

xcii mod n

Il suffit de multiplier entre eux les xi dont les e(i) correspondants sont non-nuls : maximum [ log2n ]

opérations.

Deuxième méthode :

On utilise le fait que a ≡ b mod n implique a2 ≡ ba mod n :

i ¡- 1

j ¡- 0

tant que (k¡e) faire :

j ¡- j*a // on multiplie j par a

j ¡- j mod n // on affecte à j la valeur du reste de la D.E. de j par n

k ¡- k+1 // on incrémente la variable compteur k

retourner j

Cet algorithme fait n itérations de la boucle dont le temps d’exécution de chacune est similaire.

Cet algorithme est donc en temps polynomial, mieux : linéaire.

5.2.5 Tests probabilistes de primalité

Les algorithmes probabilistiques de test de primalité ont vu le jour dans les années 1970. Celui de

Miller-Rabin en 1977. Il est un raffinement du test de Solovay-Strassen. Miller-Rabin est utilisé dans

presque toutes les implémentations de RSA.

Comment générer de grands nombres premiers ?

Ce test repose sur l’exponentiation modulaire. Il consiste en :

- choisir un nombre au hasard entre 2 et n− 1

- si an−1 ≡ 1 mod n, déclarer que n est premier.

c’est une sorte de réciproque (probabiliste) du petit théorème de Fermat.

En 1989, Su Hee Kim et Carl Pomerance, ont montré que le risque d’erreur E(n), par exemple

que pour n = 10100, si le test probabiliste de Fermat le déclare premier, alors la probabilité que n soit

effectivement premier est supérieure à 99,9999972%.

Rappelons que si π(n) est le nombre de nombres premier et ≤ n alors nous avons

π(n) ∼ n

lnn
(5.4)
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Définition 5.2.4 Soit p un nombre premier > 2 et x un entier tel que 1 ≤ x ≤ p. On dit que x est

un résidu quadratique mod p si il existe y ∈ Zp tel que x ≡ y2 mod p.

Théorème 5.2.5 (Critère d’Euler) Soit p un nombre premier > 2. x est un résidu quadratique

mod p si et seulement si x(p−1)/2 ≡ 1 mod p.

On suppose que qu’il existe y tel que x ≡ y2 mod p d’où x(p−1)/2 = (y2)(p−1)/2 = yp−1 ≡ 1 mod p.

Preuve :

Inversement. Soit g un générateur de de Z∗
p alors il existe un entier i tel que x(p−1)/2 = (gi)(p−1)/2 =

yi(p−1)/2 mod p. D’où l’ordre p de g divise i(p − 1)/2 d’où i est pair et x = gi/2.

Définition 5.2.6 (Symbole de legendre) Soit p un nombre premier > 2. Pour tout entier a

L(a, p) =







0 si a ≡ 0 mod p

1 si a est un résidu quadratique mod p

−1 si a est un non-résidu quadratique mod p

Théorème 5.2.7 Soit p un nombre premier > 2 . On a L(a, p) = a(p−1)/2 mod p.

Définition 5.2.8 Soit n un entier impair dont la décomposition en nombre premiers est n =
∏k

i=1 p
ei
i

et a un entier. Le symbole de Jacobi est défini par n =
∏k

i=1 L(a, pi)
ei .

Algorithme de Solovay-Strassen

Mis au point en 1976.

1) on tire aléatoirement un entier a tel que 1 ≤ a ≤ n− 1.

2) si L(a, n) ≡ a(n−1)/2 mod n alors n est premier,

sinon n est décomposable.

L’algorithme de Solovay-Strassen est un algorithme polynômial en O((lnn)3)

Test de Miller-Rabin

L’idée est surtout de combiner plusieurs tests afin d’avoir une probabilité très forte (99,999 ?%)

d’avoir un nombre premier.

Proposition 5.2.9 L’algorithme de Miller-Rabin est polynomial, de complexité O((lnn)3).

Lemme 5.2.10 Soit n ≥ 3 impair a ∈ Z
∗
n+. On pose n − 1 = 2km où m est impair. Si l’une des

conditions suivante est vraie alors n est décomposable.

i) an−1 6≡ 1 mod n ;

ii) an−1 ≡ 1 mod n, am 6≡ 1 mod n et aucun des éléments de la suite am, a2m, a4m, · · · , a2km n’est

congru à −1 mod n.

Master C2SI - 2023-24 Introduction à la cryptographie E. M. Souidi
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Preuve :

i) c’est la contraposée du petit théorème de Fermat.

ii) Soit b le dernier entier dans la suite am, a2m, a4m, · · · , qui n’est pas congru à 1 mod n, alors

b2 ≡ 1 mod n or b 6≡ ±1 mod n donc b− 1 et b+ 1 sont des facteurs non triviaux de n.

Si a ∈ Z
∗
n+ satisfait la condition :

i) du lemme ?? a est appelé témoin de Fermat pour la non décomposabilité de n. On note

Fn = {a ∈ Z
∗
n + /a est un témoin de Fermat}

Tout a ∈ Z
∗
n+ qui n’est pas premier avec n est un témoin de Fermat pour n

ii) du lemme ?? a est appelé témoin de Miller.

Un entier n composé dont les seuls témoins de Fermat sont les nombres premiers avec n est appelé

nombre de Carmichael.

Le pus petit nombre de Carmichael est 561 = 3× 11× 17.

Proposition 5.2.11 Si n est un nombre composé mais n’est pas de Carmichael alors |Fn| > n/2.

On considère B = Z∗
nFn, on a B = {a ∈ Z∗

n|an−1 = 1 mod n}. On vérifie facilement que B est un

sous groupe de Z∗
n et qu’il est propre puisque n est un nombre composé mais n’est pas de Carmichael.

D’après le théorème de Lagrange |B| divise Z∗
n. D’où |B| ≤ (n− 1)/2 . Donc |Fn| = |Z∗

n| − |B| > n
2 .

L’algorithme dit de Fermat suivant permet de tester si un nombre est probablement premier en

temps polynomial

Algorithme The Fermat ”Almost Prime” Test.

entrée : un entier n > 2.

Algorithme :

choisir a ∈ Z∗
n

if an−1 ≡ 1 mod n

alors sortir ?premier ?

sinon sortir ?composé ?.

Si l’entrée est un nombre premier alors cet algorithme affirme certaimement qu’il est premier. Mais

si n est un nombre composé mais n’est pas de Carmichael alors la proposition donne composé avec la

probabilité au moins 1
2 .

Cet algorithme est utilisé dans certains cryptosystèmes puisqu’il y a plus de nombre premier que

de nombre de Carmichael.

Théorème 5.2.12 (Alford, Granville and Pomerance (1994)) Le nombre des nombres de Car-

michael plus petits ou égaux à n est supérieur ou égale à n2/7. En particulier il y a un nombre infini

de nombres de Carmichael.

L’algorithme suivant utilise les témoins de Fermat et de Miller.
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Algorithme de Test de primalité de Miller-Rabin . Algorithme : test de primalité de Miller-Rabin

sur n

Choisir a ∈ {1, · · · , n− 1}
Si PGCD(a, n) 6= 1, retourner ”composé”

Écrire n− 1 sous la forme m.2k avec m impair

Si am ≡ 1 mod n, retourner ”premier”

De i = 0 à k − 1, faire :

si am.2i ≡ −1 mod n, retourner ”premier”

i=i+1

Retourner ”composé”

Théorème 5.2.13 L’algorithme de test de primalité de Miller-Rabin est probabiliste et polynomial.

Soit l’entré n.

i) si n est premier alors l’algorithme donne tjrs premier.

ii) si n est composé alors la probabilité pour que l’algorithme donne composé est ≥ frac12

Preuve : i) Supposons que l’entrée n est premier. pour tout a ∈ Z
∗
n on a pgcd(a, n) = 1. L’algorithme

ne peut donner composé en ligne 2. Le seul cas où il peut sortir composé est si a 6≡ 1 mod n et

am.2i 6≡ −1 mod n pour tout 0 ≤ i ≤ k − 1. Dans ce cas on a soit :

an−1 6≡ 1 mod n d’où a est un témoin de Fermat pour n.

ou an−1 ≡ 1 mod n d’où a est un témoin de Miller pour n.

Ce qui est impossible puisque n est premier d’après le Lemme 5.2.10.

ii) On considère deux cas :

1) n est composé et n’est pas un nombre de Carmichael

Supposons que l’algorithme donne ”premier”. On a alors soit : am ≡ 1 mod n ou am.2i ≡ −1 mod n

pour un certain 0 ≤ i ≤ k− 1. Dans les 2 cas an−1 ≡ 1 mod n , d’où a n’est pas un témoin de Fermat

pour n. Mais d’après la Proposition 5.2.11 on a |Fn| ≥ n
2 . Donc Pr(l’algorithme donne composé ≥ 1

2).

2) n est est un nombre de Carmichael

On considère deux sous-cas :

a) n n’est pas une puissance d’un nombre premier

On pose

t = max{0 ≤ i ≤ k − 1|∃a ∈ Z
∗
n tel que am.2i = −1 mod n}

et

Bt = {a ∈ Z
∗
n|am.2i = ±1 mod n}

si a 6∈ Bt l’algorithme donne composé.

5.3 Remarques sur RSA

Souvent on utilise RSA en combinaison avec avec un crypto-système à clef privée. (PGP)
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5.4 Attaques

Il y a deux types d’attaques pour un système à clé publique :

i) attaque sur la clé : étant donnée la clé publique, retrouver la clé secrète. Pour RSA, il s’agit,

étant donné (N, e), de retrouver (p, q, d). On peut montrer que c’est équivalent à la factorisation de

N .

ii) attaque sur le message : étant donnée un message chiffré, retrouver le message clair M corres-

pondant. Pour RSA, comme c = M e mod n , il s’agit d’extraire des racines e-èmes modulo n.

On montre que le calcul d’une des clefs à partir de l’autre est équivalent au problème de la facto-

risation.

Il n’est pas encore établi que la cryptanalyse du RSA est équivalente au problème de la factorisation.

5.4.1 Sécurité

Le record actuel de factorisation est de 200 chiffres décimaux (RSA-200), soit 663 bits. Cette

factorisation a été annoncée par Bahr, Boehm, Franke et Kleinjung le 9 mai 2005. Il est recommandé

d’utiliser une clé d’au moins 1024 bits. Aussi, p et q doivent être des nombres premiers forts, i.e. tels

que p− 1, p+1, q− 1, q+1 ont un grand facteur premier. De même, si r = (p− 1)/2 et s = (q− 1)/2,

r − 1 et s− 1 doivent avoir un grand facteur premier. L’exposant privé d ne doit pas être choisi trop

petit ; par contre, on peut prendre e petit pour accélérer le chiffrement (e = 65537 est classique).

les clés 1 024 bits ne seront bientôt plus un standard. Dans une publication spéciale de mai 2006,

le (NIST) National Institute of Standards and Technology avait recommandé que cette clé ne soit

plus utilisée après 2010 [?]. Le même mois, les Laboratoires RSA avaient publié des recommandations

invitant à passer aux clés de 2 048 bits. De quoi être tranquille jusqu’en... 2030, selon RSA [?]. D’autres

prévisions prévoient, puisque la puissance des ordinateurs double tous les 18 mois (loi de Moore), une

clé de 2048 bits devrait tenir jusqu’à ... 2079.

Mais il faut également prendre en considération la possibilité d’apparition que de nouveaux algo-

rithmes de factorisations soient découverts dans l’avenir et permettent de réduire le temps de factori-

sation nécessaire sur grands nombres.

Il a été prouvé théoriquement qu’un modèle d’ordinateur, dit quantique, permettrait de factoriser

très rapidement des entiers. Dans le cas de la mise en pratique de tel modèle, le système RSA devien-

drait obsolète ainsi que le problème du logarithme discret et donc Diffie-Hellman et la cryptographie

à courbe elliptique.

5.4.2 vitesse de RSA

Compte tenu de la complexité des traitements, le DES est environ 100 fois à 1000 fois plus rapide

que le RSA.

5.5 Exemple d’application de RSA

Sécurisation de transactions sur l’Internet. Cartes à de crédit bancaires
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Le numéro de carte de crédit est un numéro de 16 chiffres auquel on ajoute les 4 chiffres de la date

d ?expiration, soit au total 20 chiffres.

On utilise RSA pour la transmission du numéro de carte de crédit sur Internet.

on choisit p et q deux grands nombres premiers p = 9760959751111112041886431, q = 834552399867834125649

on calcule n = pq81460323853031154412157864943449033559900223014841

et φ(n) = (p− 1)(q − 1) = 81460323853031154412157846836965283770446924637300

on choisit sa clé de chiffrement e = 45879256903 et on calcule son inverse d (modφ(n)) :

d = 61424931651866171450267589992180175612167475740167

Un client dont le numéro de carte de crédit est 1234 5678 9098 7654 et la date d’expiration est

le 01/06 enverra donc le message M = 12345678909876540106. L’application d’envoi calcule M ′ ≡
M e (modn) soit

M ′ = 6251765106260591109794074603619900234555266946485.

Le nombre M ′ est transmis. À la réception on calcule : (M ′)d ≡ 12345678909876540106 (modn).

Qui correspond donc bien au numéro de la carte de crédit ainsi que sa date d ?expiration.

5.6 Exercices

Exercise 5.7 1. Si n est un entier impair et m1 ≡ m2 mod n alors L(m1, n) = L(m2, n)

2. Si n est un entier impair alors L(2, n) =

{

1 si n ≡ ±1 mod 8

−1 si n ≡ ±3 mod 8

3. Si n est un entier impair alors L(m1m2, n) = L(m1, n)L(m2, n). En particulier si m = 2kt où

t est impair alors L(m,n) =

{

−L(n,m) si m ≡ n ≡ 3 mod 4

L(m,n) si sinon

4. Si m et n sont des entiers impairs alors L(m,n) =

{

−L(n,m) si m ≡ n ≡ 3 mod 4

L(m,n) si sinon

5.8 Théoreme de Fermat

Théorème 5.8.1 (Petit théorème de Fermat) Soit p un nombre premier. Pour tout entier a pre-

mier avec p on a : ap−1 ≡ 1 mod p.

Autrement dit si p est premier alors pour tout entier n on a : ap ≡ a mod p.

On peut diminuer la taille des exposants dans les calculs :

Théorème 5.8.2 Soit p un nombre premier. Pour tout entier a premier avec p et pour tout exposant

entier d on a la relation : ad mod p = ad mod p−1 mod p.

Théorème 5.8.3 Soit p un nombre premier. Pour tout entier a on a la relation : ap ≡ a mod p.

Théorème 5.8.4 Pour tout entier a premier avec n on a la relation : aϕ(n) ≡ 1 mod n.

Théorème 5.8.5 (Théorème de Wilson) : un entier p est premier si et seulement si (p − 1)! ≡
−1 mod p

Inutilisable en pratique pour savoir si un nombre est premier : trop lent
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5.9 Méthodes de factorisation

5.9.1 Le crible d’Eratostène

C’est la méthode näıve qui consiste à diviser n par tous les nombres <
√
n. Il est vieux de plus de

2000 ans.

Proposition 5.9.1 Le crible d’Erastosthène est de complexité O(√n(lnn)2)

Preuve : Il faut faire
√
n divisions dont le temps de calcul est O(lnn)2)

Imaginons un ordinateur capable de réaliser 109 divisions par seconde ! Si n est de l’ordre de 21024

,
√
n ⋍ 10150. Il faudrait donc au crible d’Eratostème près de 10140 secondes ce qui dépasse de très

loin l’âge de l’univers !

5.9.2 La méthode de Fermat

Proposition 5.9.2 Soit n = p.q, avec p ≥ q > 0 des entiers impairs. Alors

n = p.q =

(
p+ q

2

)2

−
(
p− q

2

)2

= u2 − v2

Autrement dit, u2 − n = v2 avec u = (p+ q)2 et v = (p− q)2 si p et q sont proches alors v est petit et

u est très voisin de
√
n.

Méthode de Fermat :

Initialiser u à
√
n

Tester si u2 − n est un carré

Si oui, u2 − n = v2 alors n = (u− v)(u + v)

Sinon, incrémenter

Exemple :

n = 387400807. On a : [
√
n = 19683

- 196832 − 387400807 = 19682 n’est pas un carré

- 196842 − 387400807 = 59049 = 2432 est bien un carré !

On obtient ainsi la factorisation de n : n = (19684 − 243)(19684 + 243) = 19927.19441 On vérifie

que 19927 et 19441 sont des nombres premiers.

Si p et q pas très proches, le processus peut être long.

Cet algorithme est de complexité O((lnn)3), en effet, le seul calcul à effectuer est une exponentiation

modulaire de complexité O(ln(n?1)(ln n)2) = O((ln n)3).

5.9.3 La méthode p− 1 de Pollard

Adapté pour la factorisation de nombres n friables. La friabilité (en anglais smoothness).

Définition 5.9.3 (Nombre B-lisse) Soit n ∈ N et
∏

i=1 kp
ei
i sa décomposition en facteurs premiers.

n est dit B-lisse si pour tout 1 ≤ i ≤ k on a pi ≤ B.

n est dit B-superlisse si pour tout 1 ≤ i ≤ k on a pi ≤ B ≤ peii
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Définition 5.9.4 (Nombre friable) Soit n ∈ N et p un facteurs de n. p est dit friable si p − 1 est

B-superlisse avec B ”petit”.

Principe : trouver un multiple Q de p− 1 sans connâıtre p.

Fermat : pour tout a ∈ N et premier avec n on a aQ ≡ 1 mod p.

En particulier, p divise aQ− 1 et p divise n.

Si n ne divise pas aQ− 1 alors pgcd(aQ− 1, n) = p ainsi on trouve un facteur p de n.

Impact sur cryptosystèmes à clefs publiques : Choix des paramètres p et q dans RSA et Rabin

(q ≤ p) p− 1 et q − 1 ne sont pas B-lisse pour B ”petit”.

Problème : Comment trouver Q adéquat tel que (p − 1)|Q ?

Soit πB l’ensemble des nombres premiers ≤ B

Si p− 1 est supposé B-superlisse :

1) p− 1 divise Q1 = ppcm{ql/q ∈ πB et ql ≤ B}, Plus précisément : Q1 =
∏

q∈πB
q[lnB/ ln q].

2) Si p− 1 est supposé B-lisse :

p− 1 divise Q1 = ppcm{ql/q ∈ πB et ql ≤ n}, Plus précisément : Q1 =
∏

q∈πB
q[lnn/ ln q].

En général, B << n et donc Q1 << Q2.

Exemple : Soit à factoriser n = 969169. On pose B = 10 d’où πB = {2, 3, 5, 7} et Q1 = 23.32.5.7

On choisit a = 3 : pgcd(3, n) = 1, aQ1 = 323.32.5.7 = 613986, Calcul de d = pgcd(613986−1, n) =

281. Autre facteur de n : n , d = 3449, 969169 = 281.3449. Remarque : d− 1 = 280 = 23 × 5× 7 est

10-superlisse.

5.9.4 La méthode ρ de Pollard

Nous utilisons une fonction f : Zn −→ Zn ”simple” pour générer une suite aléatoire de la façon

suivante : {

x0 ∈ Zn

xi+1 = f(xi) pour tout i ∈ N

Il y a forcément des collisions c’est à dire il existe des entiers i 6= i′ et xi = xi′ .

En pratique on prend pour f une fontion polynômiale de degré 2 f(x) ≡ (x2 + c) mod n avec

c ∈ Z
∗

Si p|n, les xi distincts mod n le seront souvent mod p. On calcule les {xi}i≥0 jusqu’à obtenir xj

et xk (j < k)

{

xj 6≡ xk mod n

xj ≡ xk mod p

Où p est un facteur non trivial de n en fait p = pgcd(|xk − xj|, n)
Méthode ρ de Pollard : On évalue les {xk}k≥0. Pour chaque nouvel élément xk :

- Evaluer pgcd(|xk −xj|, n) pour tous les {xi}0≤j≥k. - Si aucun facteur non-trivial n’est trouvé, passer

à xk+1

Variante de la méthode ρ de Pollard : On évalue les {xk}k≥0 pour chaque k, on détermine m tel

que 2m ≤ k < 2m + 1, (m+1 = nombre de bits de k) On pose alors j = 2m − 1) (plus grand entier de
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m bits) On calcule alors pgcd(|xk − xj|, n) si on obtient un facteur non-trivial : on a gagné, sinon, on

passe à xk+1

Avantages :

1) un seul pgcd à calculer à chaque étape ;

2) un seul élément supplémentaire stocké en mémoire

On ne détecte pas la 1ère collision mais on n’attendra pas trop. On triple au pire le nombre d’étapes

nécessaires.

Exemple : Soit n = 20467. On utilise f(x) = x2 + 1 mod n avec x0 = 1.

i xi j xj |xi − xj | pgcd(xi − xj, n)

0 1

un facteur non trivial de n : 97 on a n = 97 . 211 Remarque : on a pas detecté la première collision !

pgcd(x5 − x2, n) = pgcd(8051, 20467) = 97.

Théorème 5.9.5 L’algorithme ρ de Pollard a plus d’une chance sur deux de se terminer en O(√p)
étapes.

Permet de factoriser des nombres de 25 chiffres avec des facteur de 12 chiffres. Choix des paramètres

p et q dans RSA ou Rabin. Les facteurs p et q sont suffisamment grand !

5.9.5 La méthode du crible quadratique de Pomerance

Méthode très efficace pour les nombres ≤ 129 chiffres.

Pour n ∈ N composé, trouver x et y tels que

{

x2 ≡ y2 mod n

x 6≡ ±y mod n

Dans ce cas : n divise (x− y)(x+ y) et n ne divise pas (x± y) d’où pgcd(x− y, n) est un diviseur strict

de n.

Problème : Comment construire x et y ?

Construction de x et y satisfaisant x2 ≡ y2 mod n

On pose m = [
√
n] et f(X) = (X +m)2 − n. On a donc pour tout t ∈ Z : (t+m)2 ≡ f(t) mod n.

On évalue cette relation pour plusieurs valeurs de t :







(t1 +m)2 ≡ f(t1) mod n

(t2 +m)2 ≡ f(t2) mod n

· · ·
(ts +m)2 ≡ f(ts) mod n

On choisit r relations {i1, · · · , ir} tel que f(ti1) · · · f(tir) soit un carré, d’où x = (ti1+m) · · · (tir+m)

et y =
√

f(ti1) · · · f(tir) conviennent.
Soit B ≥ 0 et F (B) = {−1} ∩ {p premier/p ≤ B} = {p1, p2, · · · , pk} On suppose avoir s > k

relations {i1, · · · , is}/f(tij ) est B-lisse : Pour tout i ∈ {i1, · · · , is}/f(tij ) on a f(tij) =
∏

j=1 kp
αij

j on

note aij = αij mod 2
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s > k alors les lignes vi de la matrice (aij)1≤i,j≤k sont liés dans Fk
2.

Pivot de Gauss donne la relation de dépendance linéaire sur F2 vi1 + · · ·+ vir = 0 pour r ≤ s

En particuier

f(ti1) · · · f(tir) =




∏

j=1

kp
αi1,j

+···+αi1,j
2

j





Il reste à montrer comment trouver t tel que f(t) soit B-lisse :

Tester pour t ∈ {0,±1,±2, · · · } si f(t) est B-lisse. Trop long : il faut diviser f(t) par tous les p premier

≤ B.

Méthode du crible : On fixe c ∈ N
∗ et un intervalle Tc = {−c, · · · , 0, · · · , c} appelé intervalle de

crible.

On calcule f(t) pour tous les t ∈ Tc Pour p ∈ F (B), on divise f(t) par la plus grande puissance de p

divisant f(t). f(t) est B-lisse si on obtient ±1 à la fin de ce processus.

Exemple

5.9.6 La méthode GNFS

5.10 Résolution du problème du logarithme discret

5.10.1 Méthode näıve

Recherche exhaustive : Tester, pour x = 0, 1, 2, · · · , si gx = h est vérifiée dans G.

Coût mémoire : O(1) (x, g, gxeth) Coût en nombre d’opérations : O(1) Il faut trouver des méthodes

plus efficaces !

Notamment O(√n) opérations

5.10.2 Méthode Baby Step Giant Step de Shanks

Description de la méthode Soit m = [n]. On fait la division euclidienne de x par m : il existe

q, r ∈ Z : x = qm+ r où 0 ≤ r ≤ m.

Principe : trouver q et r pour en déduire x en utilisant : hg−r = (gm)q.

1) Baby Step : Déterminer l’ensemble B = (hg−r , r) où 0 ≤ r ≤ m. si il existe r ∈ [0,m[ tel que

(1, r) ∈ B alors x = r.

2) Giant Step : Soit t = gm. Pour q = 1, 2, · · · faire si il existe r ∈ [0,m[ tel que (tq, r) ∈ B, alors

x = qm+ r.

Complexité : mémoire O(√n) ; opérations O(√n).
Exemple :

5.10.3 Méthode ρ de Pollard

O(√n) opérations mais seulement O(1) place mémoire !
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5.10.4 Méthode de réduction de Pohlig-Hellman

5.10.5 Méthode de calcul d’indices

Exercice : Écrire un programme utilisant cette méthode.

5.11 Exercices

Exercice 1. Bob utilise RSA et publie sa clé publique N = 187 et e = 3.

1. Encoder le message m = 15 avec la clé publique de Bob.

2. En utilisant le fait que φ(N) = 160, retrouver la factorisation de N , puis la clé privée de Bob.

Exercice 2. Soit N = 39 et e = 29.

1. Calculer d.

2. Coder le message m = 2 et vérifiez le résultat en le décodant.

Exercice 3. La clef publique est (N, e) = (35, 5), on reçoit le message M = 10, retrouver le message

original M.

Exercice 4. Bob1 et Bob2 ont pour clé publique RSA respectivement (N, e1) et (N, e2) avec e1 et e2

premiers entre eux. Alice envoie le même message M crypté par les clés publiques RSA de Bob1 et

Bob2 en c1 et c2. Expliquer comment Eve, qui intercepte les deux messages chiffrés et qui connâıt les

clés publiques de Bob1 et Bob2, peut retrouver le message clair M .

Exercice 5. Soit le messageM = 11 à chiffrer avec le crypto-système RSA défini avec les clés publiques

e = 3 et N = 187. Donner le chiffré C de M . Sachant que N = pq, avec p = 11 et q = 17, déchiffrer

c′ = 23

Exercice 6. Soit N = pq impair avec p > q sont des entiers premiers.

1. Vérifier que N = t2 − s2 = (t+ s)(t− s) avec t = p+q
2 et s = p−q

2

2. On suppose que p est très proche de q, montrer que t est supérieur à
√
N et très proche de N .

3. Utiliser ces remarques pour factoriser N = 4397231.

4. Conclure

Exercice 7. a) On suppose que Alice et Bob utilisent l’entier n et RSA avec deux clés publiques eA

et eB premières entre elles. On suppose que Caroline envoie le même message chiffré meA et meB à

Alice et à Bob. Montrer que Eve qui écoute les communications peut retrouver facilement le message

m.

b) À fin d’améliorer la sécurité des messages Bob choisit deux exposants e1 et e2 et demande à

Alice de chiffrer d’abord son message par e1 , pour obtenir c1 = me1 puis de re-chiffrer par e2 pour

obtenir c2 = ce21 et d’envoyer c2. Est-ce que ce double chiffrement améliore la sécurité. Si oui pourquoi,

si non pourquoi.
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Chapitre 6

Cryptographie à clef publique :

ElGamal
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ElGamal est un cryptosystème asymétrique basé sur le problème du logarithme discret, comme le

protocole de Diffie-Hellman . Ce crypto-système est inventé en 1984 par Taher Elgamal, un crypto-

graphe égyptien.

Son inconvénient par rapport à RSA est que le message chiffré est deux fois plus long que le message

clair.

Cet algorithme est utilisé par le logiciel libre PGP, et d’autres systèmes de chiffrement. Il n’est pas

breveté contrairement à RSA. Il peut être utilisé pour le chiffrement et la signature électronique (voir

plus tard).

Le calcul de logarithmes sur le corps de nombres réels est facile. Mais ce calcul est difficile sur les

corprs de Galois Fp.

Courbes elliptiques

ElGamal Signature

6.1 Description de ElGamal

génération de la clef

Destinataire :

- choisit deux paramètres publiques : un nombre premier p et un générateur g du groupe (Z∗
p, .)

- choisit aléatoirement un nombre a dans [1, · · · , p− 2] et calcule α = ga mod p.

- garde secrète sa clé a et publie (p, g, α).

Emetteur : chiffrement

- exprime son message sous la forme d’un nombre M entre 0 et p− 1 (quitte à le décomposer).
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- choisit aléatoirement un nombre b dans l’intervalle [1, · · · , p − 2] et calcule β = gb mod p.

- chiffre alors son message M en C = αb.M mod p.

- envoie au destinataire le couple (β,C).

Destinataire : déchiffrement

- Pour déchiffrer le message, le destinataire calcule x = p − 1 − a, calcule βx.C mod p et retrouve le

message M . En effet :

βx.C = (gb)
x
C = gb(p−1−a).αb.M = gb(p−1−a).gab.M ≡ gb(p−1).g−ab.gab.M ≡M mod p

car gb(p−1) ≡ 1 mod p d’après le petit Théorème de Fermat.

6.2 Remarques

1) Il est conseillé de changer la valeur de son paramètre b pour chaque nouveau message. Supposons,

que deux messages M et M ′ soient cryptés avec la même valeur de b et qu’une tierce personne connaisse

le texte clair M : C = αb.M mod p et C ′ = αbM ′ mod p Alors,

C ′C−1 = αbMM ′−1(αb)−1 mod p = M ′M−1 mod p

et

M ′ = C ′(M ′)−1M mod p

et on déduit M ′.

2) L’utilisation du paramètre aléatoire a renforce la sécurité car le même message M chiffré à 2

moments différents donnera deux messages chiffrés différents.

Exemple

Supposons qu’Alice et Bob choisissent le nombre premier p = 1259 et g = 3.

Alice choisit x = 144 et calcule 3144 = 572 [1259].

Alice envoie 572 à Bob.

Bob choisit y = 731 et calcule 3731 = 900 [1259] Bob envoie 900 à Alice.

Alice calcule 900144 = 572731 = 26 [1259] Donc Alice et Bob peuvent utiliser la clé K = 26.

6.3 Exercices

Exercice 1. Alice choisit p = 97 et g = 13.

(a) Elle choisit aléatoirement un nombre a, disons 45, dans l’intervalle [1, · · · , 95].
(b) Elle calcule α = (1345 mod 97) = 20.

(c) Elle publie sa clé (97, 13, 20) et garde secrète sa clé 45.

Bob veut envoyer le message RAS à Alice.

(a) En utilisant le code ASCII, son message est 118 101 119.

(b) Il le découpe en nombres entre 0 et 97 : 11 81 01 11 09.
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(c) Il choisit aléatoirement un nombre b, disons 35, dans l ?intervalle [1, · · · , 95].
(d) Il calcule β = 1335 mod 97 = 71mod97.

1. Vérifier que le chiffré de son message est (71, 21 40 46 21 26). 2. Comment Alice déchiffre-t-elle le

message de Bob ? Déchiffrer-le.

Exercice 2. Soit G un groupe cyclique, soit x un ?élément d’ordre r et y un élément d’ordre s.

1. Montrer que le sous-groupe engendré par x et y a pour cardinal ppcm(r, s).

2. Comment peut-on choisir un générateur de la forme g = xiyj ?

3. Soit G = (Z/41Z)? ; calculer l’ordre de 2 (resp. l’ordre de 3) et en déduire un générateur en

utilisant la question précédente.

4. Combien de générateurs le groupe (Z/41Z)? possède-t-il ?

Exercice 3. Danny veut partager un secret n entre Alice, Bob et Charlie, sans que deux d’entre

eux puissent le reconstruire. Il fabrique un groupe G , un générateur g de grand ordre dans G , et

une décomposition n = a + b + c, puis donne ga à Alice, gb à Bob, et gc à Charlie. Ils peuvent ainsi

reconstruire gn en multipliant leurs valeurs : gn = gagbgc . 1) La donnée de gn ne permet pas facilement

de retrouver la valeur de n . Comment contourner ce problème ?

2) En supposant que le secret est maintenant gn, Alice et Bob peuvent-ils le reconstruire sans l’aide

de Charlie ?

3) En supposant encore que le secret est n, qu’Alice connâıt a, que Bob connâıt b, et qu’ils

connaissent tous les deux gc, peuvent-ils retrouver n ?

Exercice 4.
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Fonction de Hachage
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Objectif de la cryptographie :

- la confidentialité des données ; (réalisée par les algorithmes de chiffrement et de déchiffrement,

DES, IDEA, RC4, RSA, ElGamal etc )

- l’intégrité des données : prévention de modification non autorisée de données. (réalisée par les

fonctions de hachage).

- l’authentification : vérifier que le message provient bien de celui qui prétend en être l’émetteur.

(réalisée par les fonctions de hachage).

- la non-répudiation (ou non-désaveu) : prouver qu’un message a bien été émis par son expéditeur

et que ce dernier ne peut nier l’avoir transmis. (Se résout par la signature électronique.)

Une fonction de hachage transforme un message de taille arbitraire en une châıne de taille fixe

(typiquement entre 128 et 512 bits).
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Sous Linux la commande md5sum permet de calculer le haché d’un fichier. Pour l’utiliser md5sum nomFichier

et pour plus de détail sur cette commande man md5sum .

Sous Windows on peut télécharger le programme MD5Summer de 1 Il est gratuit et à interface

graphique.

Applications des fonctions de hachage : signature électronique, recherche dans une table stockage

de mots de passe, vérification de l’intégrité d’un fichier : téléchargement, confirmation de connaissance,

etc.

Protection de mots de passe : au lieu de stocker tous les mots de passe dans le serveur pour

l’authentification d’utilisateurs, il vaut mieux stocker le hache des mots de passe.

Confirmation de connaissance : si quelqu’un veut prouver qu’il connâıt un secret sans le révéler

dans l’immédiat, il peut publier le haché de ce secret. Une fois le secret révélé, il est facile de vérifier

ses dires.

7.1 Définitions

Définition 7.1.1 (Fonction à sens unique) Une fonction H : X −→ Y est une fonction à sens

unique si pour tout x il est facile de calculer H(x) mais, sachant H(x), il est très difficile de trouver

x.

Exemple 7.1.2 Soit p et q deux nombres premiers entre eux et grands :

- H(p, q) = p.q et ;

- H(x) = x2 mod n où n = pq ;

sont des fonctions à sens unique. La factorisation de grands entiers La fonction logarithme discret :

Soit p un grand nombre premier et g une racine primitive modulo p, il s’agit de retrouver a connaissant

A et g / ga = A mod p avec 0 ≤ a ≤ p− 2.

Définition 7.1.3 (Fonction de Hachage) Une fonction de hachage H est une application facile-

ment calculable qui transforme une châıne binaire de taille quelconque t en une chaine binaire de taille

fixe n (n petit entre 100 et 200), appelée empreinte, haché ou condensé de hachage.

Définition 7.1.4 Une fonction est dite :

- résistante aux collisions si est difficile de trouver deux messages M et M ′ distincts tels que H(M) =

H(M ′).

- résistante aux pré-images si étant donné un haché y, il est difficile de trouver un message M tels

que H(M) = y.

- résistante aux secondes pré-images si étant donné un message M , il est difficile de trouver M ′ tel

que H(M) = H(M ′).

Une fonction de hachage est sécurisée si elle est à la fois résistante aux collisions, aux pré-images

et aux secondes pré-images :

Remarques :

1. www.md5summer.org/
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h h h

b

b b

b

b b

m =? m1 m2 =? m1 =? m2 =?

h(m) h(m1) = h(m2) h(m1) = h(m2)

(a) (b) (c)

Figure 7.1 – (a) : résistance à la pré-image, (b) : résistance à seconde pré-image, (c) : résistance aux

collisions

Résistance à la collision =⇒ résistance à la seconde pré-image =⇒ résistance à la pré-image.

La résistance à la pré-image est équivalente à fonction à sens unique.

Soit h(x) = x2 mod p pour p premier. Ce n’est pas une fonction à sens unique car le calcul de

racine carré modulo p est facile. Pour n = pq avec p, q premiers, h(x) = x2 mod n est à sens unique,

car le calcul de racine carré modulo n est r réputé difficile. Par contre h(x) = (x + n)2 modn = x2

n’est pas résistante aux collisions (faibles ou fortes), car h(x) = h(′x).

La résistance aux collisions n’implique pas la résistance à la pré-image. En effet, soit f une fonction

résistante aux collisions dont le haché est de longueur n. On définit une fonction de hachage h de

longueur n+ 1 par

h(x) =







1||x si |x| = n

0||f(x) sinon

h est aussi résistante aux collisions. Mais si on se donne 1||x alors h(x) = 1||x.

7.1.1 Paradoxe des anniversaires

Dans un groupe de n personnes, quelle est la probabilité pour que deux d’entre-elles aient leur

anniversaire le même jour ? (c-à-d même jour et mois, mais pas forcément l’année).

Par exemple pour n = 23, Intuitivement cette probabilité est-elle beaucoup proche de 0 ou de 1
2 ?

P (pas de collusion entre 2 personnes) =

(

1− 1

365

)

P (pas de collusion entre 3 personnes) =

(

1− 1

365

)(

1− 2

365

)

P (pas de collusion entre n personnes) =

(

1− 1

365

)(

1− 2

365

)

· · ·
(

1− n− 1

365

)

pour n = 365 il y aura sûrement collision.

P (au moins une collusion) = 1− P (pas de collusion) =

(

1− 1

365

)

· · ·
(

1− 23− 1

365

)

= 0, 507 ≈ 1

2
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Pour 40 personnes cette probabilité est d’environ 90%.

On cherche cette probabilité dans un cas plus général. Pour une fonction de hachage il n’y a pas

365 valeurs mais 2n où n est la longueur de h(m).

Question : combien de messages {m1,m2, · · · ,mk} à hacher pour avoir une chance raisonnable

d’avoir h(mi) = h(mj) où i, j ∈ {1, 2, · · · , k} ?

P (pas de collusion) =

(

1− 1

2n

)(

1− 2

2n

)

· · ·
(

1− n− 1

2n

)

=

k−1∏

i=1

(

1− i

2n

)

Rappelons que e−x = 1− x+
∑+∞

j=2(−1)j x
j

j! pour tout x ∈ R, et pour x << 1 on a e−x ≈ 1− x

P (pas de collusion) ≈ e−
i

2n ≈ e−
1+2+···+k−1

2n ≈ e−
(k−1)k
2.2n

Le but est de trouver combien de messages xi faut-il pour avoir une collision ? on cherche alors k.

p = 1− e−
(k−1)k
2.2n

(k − 1)k ≈ 2n+1 ln

(
1

1− p

)

on suppose k >> 1 d’où k2 ≈ (k − 1)k d’où

k ≈
√

2n+1 ln

(
1

1− p

)

k ≈ 2
n+1
2

√

ln

(
1

1− p

)

(7.1)

Pour p = 1
2 on a k ≈ 2

n
2 .

Remarque 7.1.5 Comme conséquence du paradoxe des anniversaires, pour une fonction de hachage

H : {0, 1}∗ −→ {0, 1}n le nombre de messages à hacher pour trouver une collusion avec une probabilité
1
2 est de 2

n
2 .

La recherche brutale de collisions a plus d’une chance sur 2 d’aboutir après seulement O(2m
2 )

essais !

On est sûr d’aboutir après O(2m) essais.

Si n = 80, k ≈ 240,2.

C’est pour cette raison que toutes les fonctions de hachage sont de longueur ≥ 128.

7.2 Construction de fonctions de hachage

Une fonction de compression est une fonction qui transforme toute châıne d’une taille fixée n en

une châıne de taille fixée m avec n > m : f : {0, 1}n −→ {0, 1}m.

La construction de fonction de hachage nécessite deux ingrédients importants :

1) une fonction de compression de {0, 1}t −→ {0, 1}n où t et n sont des entiers fixes avec t > n.
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❅
❅

❅❅

❅
❅

❅❅

❅
❅

❅❅

✲ ✲ ✲
✲ ✲ ✲ ✲✲f f f h(x)

m1 m2 mk

H0 H1 Hk

g

Figure 7.2 – Construction d’une fonction de hachage h à partir d’une fonction de compression f

2) un extenseur de domaine, qui à partir d’une fonction de compression donné, produit une fonction

à entrée arbitraire.

7.2.1 Construction de Merkle-Damg̊ard

Cette construction a été proposée indépendamment par R. C. Merkle [6] et I. B. Damg̊ard [5] fin

des années 1989.

La construction de Merkle-Damg̊ard (1989) est la méthode la plus répondu pour fabriquer des

fonctions de hachage. Elle se base sur une fonction de compression.

Comme fonction de compression on peut considérer une fonction de chiffrement, car celle-ci prend

en entrée un bloc clair de longueur n et la clé de longueur k et le bloc chiffré en sortie est de longueur

n.

Elle permet de réduire le problème de la construction d’une fonction de hachage résistante à la

recherche de collision/preimage à celui de la construction d’une fonction de compression résistante à la

recherche de collision/preimage : si l’on ne trouve pas de collision/preimage pour h, alors on ne peut

trouver de collision/preimage pour H.

La plus part des fonctions de hachage l’utilise. Elle se fait à partir d’une fonction de compression.

Théorème 7.2.1 (Damg̊ard) Si la fonction de compression f est résistante aux collisions alors la

fonction de hachage obtenue est résistante aux collisions.

Se base sur une fonction de compression h : {0, 1}b × {0, 1}n −→ {0, 1}n
Application au calcul de H(M) :

Application d’un padding à M pour avoir |M | = k.b bits : on ajoute un 1 à droite de M puis

suffisamment de 0. On ajoute le 1 et b− 1 zéros même si |M | est déjà multiple de b.

Découpage du message M obtenu après le padding en blocs de taille b

M = m1m2 · · ·mk−1mk avec |Mi| = b ∈ i ∈ [1, k]. Itération de la fonction h . Voir Figure 7.2.

Itération sur les blocs : H0 = IV : Valeur initiale

H0 = 0 · · · 0, n fois

Hi = f(Hi−1||mi)

h(M) = Hk

Remarque : On peut utiliser les chiffrements par bloc comme fonction de compression.
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b

Hi−1

mi E

⊕

Hi

Figure 7.3 – Construction de Davies-Meyer

7.2.2 Construction de Davies-Meyer

Voir Figure 7.3 Soit la fonction de chiffrement E . On partage le message m à hacher m =

m0m1 · · ·mk (on complète si besoin) mi est de même longueur que la longueur de la clé de E . le
message m à hacher Les blocs d’entrée mi sont les clés de la fonction de chiffrement E . Hi est le bloc

à chiffrer par E .
H0 valeur initiale.

Hi = Emi
(Hi−1)⊕Hi−1

et

h(m) = mk

7.2.3 Construction de Matyas-Meyer-Oseas

La construction générique de Matyas-Meyer-Oseas (appelé aussi CBC-MAC) Voir Figure 7.4 est

basée sur une fonction de chiffrement par bloc Ek : Elle sera améliorée par Miyaguchi-Preneel.

Soit la fonction de chiffrement E . On partage le message m à hacher m = m0m1 · · ·mk (on complète

si besoin)mi est de même longueur qu’un bloc à chiffrer de E . Le message m à hacher Les blocs d’entrée

mi sont à chiffrer par E . Hi sont les clés de E . On considère une fonction g qui transforme n bits en

châıne de même longueur que la clé.

H0 valeur initiale.

Hi = Eg(Hi−1)(mi)⊕mi

et

h(m) = mk

7.2.4 Miyaguchi-Preneel

Voir Figure 7.5
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Hi−1

mi

E

⊕

Hi

g

Figure 7.4 – Construction de Matyas-Meyer-Oseas

Hi−1

mi

E

⊕

Hi

g

Figure 7.5 – Construction de Miyaguchi-Preneel

7.3 Applications des fonctions de hachage : MDC et MAC

Deux types d’utilisation

Une fonction de hachage est aussi appelée MDC (Modification Detection Code). Elle est sans clef.

On peut l’utiliser pour s’assurer uniquement de l’intégrité de messages. Par exemples MD4, MD5,

SHA-1.

HMAC est utilisé dans les protocoles TLS (Transport Layer Security) et IPsec

Par contre pour l’authentification on utilise des fonctions de hachage avec clef, appelé aussi MAC

(Message Authentication Code). Les MAC permettent de vérifier l’intégrité et l’authentification du

message en même temps. Elle prouve que l’expéditeur possède la clé

Construction de MAC Idée : concaténer la clé avec le message à authentifier. HMAC (standard)

Paramètres K clé jusqu’à 512 bits.

h fonction de hachage. M message à authentifier. || symbole de concaténation.

MAC(K,M) = h(M ||K)

ou

MAC(K,M) = h(K||M)

Cette construction est faible.

Une construction plus sécurisée est la suivante.
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7.3.1 Construction HMAC

Construction de M. Bellare, R. Canetti et H. Krawczyk : Soit h une fonction de hachage qui

produit des hachés de longueur ℓ. Soit M le message à authentifier et K la clé partagée par les deux

correspondants. La longueur de K doit être inférieure à 64 octets. On complète K par des zéros à

droite pour avoir une longueur de 64 octets.

On définit deux châınes fixes ( i=inner, o=outer)

ipad= l’octet 0x36 répété 64 fois,

opad = l’octet 0x5C répété 64 fois,

HMACK(M) = h(K ⊕ opad||h(K ⊕ ipad||M)) (7.2)

La longueur recommandée de K est au moins ℓ. Une grande longueur n’augmente pas la sécurité

de façon significative.

Optionnellement, HMAC permet la troncature du résultat final à 80 bits.

7.4 Preuve sans transfert de connaissance

Exemple : Un jeu de Pile ou face par Téléphone.

Ils se donnent un ensemble E par exemple E = {0, 1, · · · , n} et une partition E = X0 ∪X1 de E,

X0 sera les entiers pairs de E et X1 les entiers impairs de E. Puis ils se mettent d’accord sur une

fonction de hachage, h, de E dans un ensemble {0, 1}n . On considère le protocole suivant :

1. Alice choisit un élément x ∈ E aléatoirement (c’est le jet de la pièce), calcule y = h(x) et

communique y à Bob (Bob ne peut pas retrouver x à partir de y car h est à sens unique).

2. Bob choisit son bit aléatoire b ∈ {0, 1} et l’annonce à Alice.

3. Alice déclare qui a gagné suivant que x ∈ Xb ou non : elle prouve sa bonne foi en révélant x.

7.5 Fonction de hachage MD5

La première fonction de hachage cryptographique a été est développée par RSA Security, Inc,

nommée MD (message digest) propriétaire et jamais publiée. Par contre la version MD2 a été publiée

et la première fonction de hachage largement utilisé.

Quand Merkle en 1990 a proposé SNEFRU qui était beaucoup plus rapide que MD2, RSA Security,

Inc a répondu par MD4. MD3 a été développée mais jamais publiée ou utilisé. SNEFRU a été attaqué

en 1991 par la cryptanalyse différentielle. MD5 est venu pour combler certaines failles découverte dans

MD4, considéré actuellement non sécurisé. MD5 est légèrement moins rapide que MD4. Depuis 2004,

MD5 est considéré partiellement cassé, car il est connu que la fonction de compression qu’utilise admet

des collisions. MD5 n’est plus considérée comme sûr aujourd’hui.

L’algorithme de hachage MD5 (Message Digest Algorithm) a été développé par Ron Rivest en

1991. C’est une version renforcée de MD4 (1990) pour être plus rapide sur les machines 32 bits. Elle

prend en entrée un message de longueur arbitraire et produit en sortie une empreinte de 128 bits.

Conçue pour les processeurs 32 bits.
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✛1 à 512 bits✲✛64 bits✲
message original 10 ... 0 (ℓ)64

✛ ≡ 448 mod 512 ✲
✛ multiple de 512 ✲

Figure 7.6 – Padding de la fonction de hachage MD5

Une faille a été trouvée en 1996 et des collision trouvées en quelques heures en 2004. Elle est encore

largement utilisée en pratique. Mais à éviter !

Notations : ”+” denote l’addition de mots (mots=32 bits) modulo-232.

X ∧ Y : X and Y (bit à bit).

X ∨ Y : X or Y (bit à bit).

X ⊕ Y : X xor Y (bit à bit).

X̄ : complement de X (bit à bit).

X ←֓ s : décalage circulaire à gauche de X par s positions (0 ≤ s ≤ 31).

Fonctions primitives : On définit 4 fonctions, dites primitives, dont les arguments sont des mots

de 32 bits et produisent des mots de 32 bits aussi.

f(X,Y,Z) = (X ∧ Y ) ∨ (X̄ ∧ Z)

g(X,Y,Z) = (X ∧ Z) ∨ (Y ∧ Z̄)

h(X,Y,Z) = X ⊕ Y ⊕ Z

i(X,Y,Z) = Y ⊕ (X ∨ Z̄)

X Y Z f g h i

0 0 0 0 0 0 1

0 0 1 1 0 1 0

0 1 0 0 1 1 0

0 1 1 1 0 0 1

1 0 0 0 0 1 1

1 0 1 0 1 0 1

1 1 0 1 1 0 0

1 1 1 1 1 1 0

Table 7.1 – Table de vérité des fonctions f, g, h, i

Tableau T MD5 utilise un tableau T de 64 éléments où T [i] est le ieme élément : T [i] = [4294967296|sin(i)|]
où [ ] désigne la partie entière et i est en radians. Puisque 4294967296 = 232 chaque élément de T peut

être représenté sur 32 bits.

MD5 se fait en cinq étapes :
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A B C D

A B C D

+

+

+

+

X[k]

T [j]

f

s

Figure 7.7 – Fonction ? ? ? de hachage MD5

Hi (128 bits)

b b b

Mi (512 bits)

+ + + +

b

A B C D

A B C D

A B C D

A B C D

f, T [1, · · · , 16], X[i]

f, T [13, · · · , 32], X[i]

f, T [33, · · · , 48], X[i]

f, T [49, · · · , 64], X[i]

16 opérations

16 opérations

16 opérations

16 opérations

Hi+1 (128 bits)

Figure 7.8 – Fonction de hachage MD5

Master C2SI - 2023-24 Introduction à la cryptographie E. M. Souidi
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Groupe t tour j Constante Kt Fonction ft

1 0 · · · 19 K1= f1(B,C,D) =

2 20 · · · 39 K2= f2(B,C,D) =

3 40 · · · 59 K3= f3(B,C,D) =

4 60 · · · 79 K4= f4(B,C,D) =

Table 7.2 – Fonctions et constantes dans SHA1.

Première étape : padding Soit un message M de longueur ℓ ≤ 264 bits. On complète à droite M

par un 1, et suffisamment de 0 pour que le message étendu ait une longueur congruente à 448, modulo

512. Cette opération est faite même si ℓ est déjà congru à 448 mod 512.

Deuxième étape : appending Puis on ajoute à ce message la valeur de ℓ, codée en binaire sur 64

bits. Si ℓ > 264, les 64 bits à gauche sont utilisés. On obtient donc un message M dont la longueur

totale est un multiple de 512 bits, ou encore multiple de 16 mots (1 mot =32 bits)

Soit M = M [0] · · ·M [N − 1] le message obtenu, où chaque M [i] désigne un mot (32 bits). Puisque

la longueur de M est multiple de 512, N est divisible par 16.

On va travailler itérativement sur chacun des blocs M [i]

Troisième étape : Initialisation On considère les valeurs initiales suivantes qui sont des mots de

32 bits chacun écrit en hexadécimal.

A: 01 23 45 67 ;

B: 89 ab cd ef ;

C: fe dc ba 98 ;

D: 76 54 32 10 .

Quatrième étape : calcul itératif Traitement des blocs

For i = 0 to N/16-1 do

/* Copier le bloc i dans X. */

For j = 0 to 15 do

Set X[j] to M[i*16+j].

end fin de la boucle j

/* Affecter A à AA, B à BB, C à CC, et D à DD. */

AA = A

BB = B

CC = C

DD = D

Master C2SI - 2023-24 Introduction à la cryptographie E. M. Souidi
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Tour 1. Soit [ABCD k s j] dénote l’opération A = B + ((A + f(B,C,D) + X[k] + T [j]) ←֓ s),

(voir Figure 7.7) faire les 16 opérations :

[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]

[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]

[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]

[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]

Tour 2. Soit [ABCD k s j] dénote l’opération A = B+((A+ g(B,C,D)+X[k]+T [j]) ←֓ s), (voir

Figure 7.7) faire les 16 opérations :

[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]

[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]

[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]

[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

Tour 3. Soit [ABCD k s j] dénote l’opération A = B+((A+h(B,C,D)+X[k]+T [j]) ←֓ s), (voir

Figure 7.7) faire les 16 opérations :

[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]

[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]

[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]

[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

Tour 4. Soit [ABCD k s j] dénote l’opération A = B + ((A + i(B,C,D) + X[k] + T [j]) ←֓ s),

(voir Figure 7.7) faire les 16 opérations :

[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]

[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]

[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]

[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]

Faire les additions suivantes :

A = A + AA

B = B + BB

C = C + CC

D = D + DD

Fin de la boucle i
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✛k + 1 bits ✲✛64 bits✲
message original ℓ bits 10 ... 0 (ℓ)64

✛ ≡ 448 mod 512 ✲
✛ multiple de 512 ✲

Figure 7.9 – Padding de la fonction de hachage SHA1

Cinquième étape Le haché est produit comme A, B, C D

7.6 Fonction de hachage SHA-1

SHA-1 (Secure Hash Algorithm 1), comme MD5, est basé sur MD4. (donc sur la construction

de Merkle-Damg̊ard). Son fonctionnement très similaire à MD5. Mis au point et publié en 1993 par

l’agence de sécurité nationale américaine (NSA). C’est un standard officiel aux US pour usage avec le

schéma de signature DSA depuis 1995 et jusqu’en 2012.

L’algorithme SHA-1 traite par blocs de 512 bits et produit une empreinte de 160 bits en sortie. Il

s’effectue en 80 tours qui sont divisés en 4 groupes . Le SHA-1 traite les messages d’au plus 264 bits

en entrée.

SHA-1 a été cassé en février 2005 par Wang, Yin et Yu, qui ont montré que des collisions pouvaient

être trouvées en 269 essais au lieu de 280. Puis 263 d’après des travaux récents, ce qui rend SHA-1 plus

vulnérable.

SHA-2 est destiné à remplacer SHA-1. Les différences principales résident dans les tailles de hachés

possibles 256, 384 ou 512 bits, qui sont désignés respectivement par SHA256, SHA384 ou SHA512

bits. En février 2004, le NIST a introduit SHA-224. SHA-224 est identique à SHA-256, mais utilise

des valeurs initiales différentes et tronque le haché final en prenant les 224 bits à gauche.

1) Padding : Complément de M . Soit M un message de longueur ℓ bits. On ajoute le bit ”1” à la

fin du message M , puis k zéros, où k ∈ N
∗ est tel que : ℓ+ 1 + k ≡ 448 mod 512. L’ajout de 1 se fait

même si ℓ ≡ 448 mod 51.

Puis on ajoute ℓ écrit en binaire sur 64 bits.

2) Division du paddé : découper le message complété en blocs de 512 bits Le message complété

est découpé en n blocs de 512 bits, notés M1,M2, · · · ,Mn. Chaque bloc Mi est ensuite découpé en 16

mots de 32 bits, notés Mi = (M
(0)
i ,M

(1)
i , · · · ,M15

i ), où les M
(k)
i sont des mots de 32 bits.

Initialisation des variables

Les cinq variables suivantes sont affectées de valeurs initiales : (les 4 premières sont les mêmes que

dans MD4 et MD5)

— A = H
(0)
0 = 0x67452301

— B = H
(1)
0 = 0xefcdab89

— C = H
(2)
0 = 0x98badcfe

— D = H
(3)
0 = 0x10325476

— E = H
(4)
0 = 0xc3d2e1f0

et H0 = H
(0)
0 H

(1)
0 H

(2)
0 H

(3)
0 H

(4)
0 de longueur 160 bits.
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Hi consiste en 5 mots de 32-bit H
(0)
i ,H

(1)
i ,H

(2)
i ,H

(3)
i ,H

(4)
i

Hn est le haché.

Les Mi sont traités dans l’ordre et chaque bloc Mi subit un traitement de 80 tours, comme montré

par la Figure 7.10.

On construit 80 mots de 32 bits chacun Wj si 0 ≤ j ≤ 79, pour chacun des 80 tours.

Wj =

{

M
(j)
i , 0 ≤ j ≤ 15

(Wj−3 ⊕Wj−8 ⊕Wj−14 ⊕Wj−16) ←֓ 1, 16 ≤ t ≤ 79
(7.3)

Les quatre groupes de tours ont même structure mais utilisent différentes fonctions ft et constantes

Ki où 1 ≤ t ≤ 4. Chaque groupe est composé de 20 tours.

Notations :

∧ = opération binaire AND ,

∨ = opération binaire OR,

⊕ = opération binaire XOR,

X̄ = complément binaire de X,

⊞= addition modulo 232,

x ←֓ s = décalage circulaire à gauche de s bits où 0 ≡ s ≤ 31.

Fonctions utilisées lors du calcul des valeurs de hachage. SHA-1 utilise une succession de fonctions

logiques f0, f1, · · · , f79. Chaque fonction ft, où 0 ≤ t ≤ 79, opère sur trois mots de 32 bits, x, y, z et

génère un mot de 32 bits en sortie. La fonction ft est définie comme suit :

ft(X,Y,Z) =







Ch(X,Y,Z) = (X ∧ Y )⊕ (X̄ ∧ Z), si 0 ≤ t ≤ 19

Parity(X,Y,Z) = X ⊕ Y ⊕ Z, si 20 ≤ t ≤ 39

Maj(X,Y,Z) = (X ∧ Y )⊕ (X ∧ Z)⊕ (Y ∧ Z), si 40 ≤ t ≤ 59

Parity(X,Y,Z) = X ⊕ Y ⊕ Z, si 60 ≤ t ≤ 79

(7.4)

x y z Ch Parity Maj

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 0 1 0

0 1 1 1 0 1

1 0 0 0 1 0

1 0 1 0 0 1

1 1 0 1 0 1

1 1 1 1 1 1

Table 7.3 – Table de vérité des fonctions Ch,Parity et Maj
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Table de vérité des fonctions utilisées dans SHA-1 SHA-1 utilise 80 constantes notéesK0,K1, ...,K79

et définies par :

Kt =







[230
√
2] = 0x5a827999, si 0 ≤ t ≤ 19

[230
√
3] = 0x6ed9eba1, si 20 ≤ t ≤ 39

[230
√
5] = 0x8f1bbcdc, si 40 ≤ t ≤ 59

[230
√
10] = 0xca62c1d6, si 60 ≤ t ≤ 79

(7.5)

L’opération dans le tour j du groupe t est donné par :

A,B,C,D,E = (E + ft(B,C,D) + (A) ←֓ 5 +Wj +Kt), A, (B) ←֓ 30, C,D (7.6)

Voir Figure 7.11

SHA1 est formé de 4 groupes de tours :

Groupe 1 formé des 20 premiers tours où on utilise la fonction f1, la constante K1 et les mots

W0, · · ·W19.

Groupe 2 formé des 20 tours qui suivent où on utilise la fonction f2, la constante K2 et les mots

W20, · · ·W39.

Groupe 3 formé des 20 tours qui suivent où on utilise la fonction f3, la constante K3 et les mots

W40, · · ·W59.

Groupe 4 formé des 20 derniers tours où on utilise la fonction f4, la constante K4 et les mots

W60, · · ·W79.

Algorithme SHA-1 .
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CHAPITRE 7. FONCTION DE HACHAGE 98

Hi−1 160 bits

b b b

⊞

⊞

⊞

⊞

⊞

Hi

b

b

b

b

b

Groupe 1 (20 tours)

Groupe 2 (20 tours)

Groupe 4 (20 tours)

Groupe 3 (20 tours)

f1, K1, Wj,j=1···19

f2, K2, Wj,j=20···39

f3, K3, Wj,j=40···59

f4, K4, Wj,j=60···79

Mi 520 bits

génération
des Wj

W0 · · ·W19

W60 · · ·W79

W40 · · ·W59

W20 · · ·W39

Figure 7.10 – Fonction de hachage SHA1
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CHAPITRE 7. FONCTION DE HACHAGE 99

A B C D E

⊞

⊞

⊞

⊞

ft

A B C D E

←֓ 5

←֓ 30

Wj

Kt

Figure 7.11 – Tour j du groupe t dans SHA1

message m = m0m1 · · ·ms−1

Construct M = M [0]M [1] · · ·M [N − 1]

A←− 0x67452301

B ←− 0xefcdab89

C ←− 0x98badcfe

D ←− 0x10325476

E ←− 0xc3d2e1f0

for i = 0 to N do

PreparerW

A←− A

B ←− B

C ←− C

D ←− D

E ←− E

for t = 0 to 79 do

T ←− (A ←֓ 5) + ft(B,C,D) +E +Kt +Wt

E ←− D

D ←− C

C ←− B ←֓ 30

B ←− A

A←− T

A←− A+A

B ←− B +B

C ←− C + C

D ←− D +D

E ←− E + E

(h(M) = ABCDE)
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Calcul de l’empreinte

On traite successivement les N blocs de M comme il suit :

Pour i = 1, · · · , N
2) On initialise a, b, c, d et e avec les valeurs de hachage du tour précédent

— a = H
(i−1)
0

— b = H
(i−1)
1

— c = H
(i−1)
2

— d = H
(i−1)
3

— e = H
(i−1)
4

3) Pour t = 0, · · · , 79
— T = ROTL5(a) + ft(b, c, d) + e+Kt +Wt

— e = d

— d = c

— c = ROTL30(b)

— b = a

— a = T

4) Calcul des valeurs de hachage intermédiaires

— H0(i) = a+H
(i−1)
0

— H1(i) = b+H
(i−1)
1

— H2(i) = c+H
(i−1)
2

— H3(i) = d+H
(i−1)
3

— H4(i) = e+H
(i−1)
4

Après répétition des quatre étapes ci-dessus pour les N blocs du message M , le condensé de 160

bits de M est obtenu par concaténation des valeurs

H
(N)
0 ,H

(N)
1 ,H

(N)
2 ,H

(N)
3 ,H

(N)
4

Méthode 1 Le résumé de message est calculé en utilisant le message bourré comme décrit à la

section 4. Le calcul est décrit avec l’utilisation de deux mémoires tampon, chacune consistant en cinq

mots de 32 bits, et une séquence de quatre vingt mots de 32 bits. Les mots de la première mémoire

tampon de cinq mots sont étiquetés A, B, C, D, E. Les mots de la seconde sont étiquetés H0, H1,

H2, H3, H4. Les mots de la séquence de 80 mots sont étiquetés W (0), W (1),..., W (79). Une mémoire

tampon TEMP d ?un seul mot est aussi employée. Pour générer le résumé de message, les blocs M(1),

M(2),..., M(n) de 16 bits définis à la section 4 sont traités dans cet ordre. Le traitement de chaque

M(i) implique 80 étapes. Avant de traiter un bloc, les H sont initialisés comme suit, en hexadécimal :

H0 = 67452301 H1 = EFCDAB89 H2 = 98BADCFE H3 = 10325476 H4 = C3D2E1F0.

Ensuite M(1),M(2), · · · ,M(n) sont traités. Pour traiter M(i), on procède comme suit :

a. Diviser M(i) en 16 mots W (0),W (1), · · · ,W (15), où W (0) est le mot le plus à gauche.

b. Pour 16 ? t ? 79 soit

W (t) = S1(W (t− 3)OUXW (t− 8)OUXW (t− 14)OUXW (t − 16))
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c. Soit A = H0, B = H1, C = H2, D = H3, E = H4.

d. Pour 0 ? t ? 79 faire TEMP = S^5(A) + f(t;B,C,D) + E + W(t) + K(t) ; E = D ; D = C ;

C = S^30(B) ; B = A ; A = TEMP ; e.

Soit H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E. Après le traitement

de M(n), le résumé de message est la châıne de 160 bits représentée par les 5 mots H0 H1 H2 H3 H4

7.7 SHA-1 vs MD5

- l’attaque par force brute est plus difficile (160 contre 128 bits pour MD5)

- non vulnérable à toutes les attaques connues (comparées à MD4/5)

- un peu plus lent que MD5 (80 contre 64 étapes)

Fonction Empreinte Complexité Résistance aux Compléxité

requise collisions de l’attaque

MD5 128 bits O(264) Cassé [Sasaki al.05] O(230)
SHA-1 160 bits O(280) Cassé (Crypto05 - Wang al.]) O(263)
HAVAL 256 bits O(2128) Cassé (Asiacrypt 04) O(210)
SHA-256 256 bits O(2128) Sûr

Whirlpool 512 bits O(2256) Sûr

Table 7.4 – Comparaison de fonctions de hachage

fonction taille du taille du empreinte nombre année

Bloc en bits mot en bits en bits de Tours

MD4 512 32 128 48 1990

MD5 512 32 128 64 1992

SHA-0 512 32 160 80 1993

SHA-1 512 32 160 80 1995

SHA-224 512 32 224 64 2004

SHA-256 512 32 256 64 2002

SHA-384 1024 64 384 80 2002

SHA-512 1024 64 512 80 2002

Whirlpool 512 - 512 10 2003

Table 7.5 – Fonctions de hachage standards

7.8 conclusion

SHA-3 est un appel à candidature du NIST

61 candidats soumis en octobre 2008. 51 propositions acceptes (les autres étant incomplets).

Master C2SI - 2023-24 Introduction à la cryptographie E. M. Souidi
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- pour l’instant 10 candidats déjà cassés, et une dizaine d’autres ’blessés’.

- il reste une trentaine de candidats potentiellement finalistes.

- 3 ou 4 candidats ’stars’ (équipe renommée, algorithme médiatisé, etc.)

- 5 retenus.

Fonctions de hachage basées sur des chiffrements par blocs

7.9 Exercices

Exercice 1. Soit f : F2m
2 −→ F

m
2 une fonction de hachage et h une deuxième fonction de hachage

définie par :

h : F
4m
2 −→ F

m
2

x1||x2 −→ f(f(x1)||f(x2))

où || désigne l’opération de concaténation. Montrez que si f est résistante aux collisions, alors h est

aussi résistante aux collisions.

Exercice 2. Soit une fonction de hachage h : {0, 1}∗ −→ {0, 1}m.

Montrer que la recherche exhaustive de collisions a plus d’une chance sur deux d’aboutir après seule-

ment O(2m
2 ).

Exercice 3. Les systèmes d’authentification usuels vérifient les mots de passe à l’aide de leur haché

stocké dans des fichiers protégés.

1. Quelle est l’utilité de stocker les hachés des mots de passe plutôt que les mots de passe eux-

mêmes ?

2. Pourquoi doit-on protéger l’accès aux hachés des mots de passe ?

3. Sous quelle condition cette précaution ne serait-elle pas nécessaire ?

Exercice 4. Indiquer pour chacune des fonctions suivantes (i) si elles sont à sens unique ; (ii) si elles

sont résistantes aux collisions.

- h1(x) = x3modp pour p premier de 1024 bits ;

- h2(x) = x3modn pour n = pq , avec p et q deux nombres premiers de 512 bits ;

- h3(x) = 3xmodp pour p premier de 1024 bits.

Exercice 5. Soit p = 1 + 2q un grand nombre premier tel que q soit aussi premier. Soit α et β

deux éléments primitifs de Z
∗
p . La valeur de logα β n’est pas publique et l’on suppose qu’elle est

calculatoirement difficile à obtenir.

a) Montrer que la fonction de hachage

h : Zq × Zq −→ Z
∗
p

(x1, x2) −→ αx1βx2

résiste aux collisions si le calcul de logα β est difficile.

b) Que pensez vous de cette fonction de hachage ?
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