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Chapitre 1
Introduction a la cryptographie

”Ce qui est secret est vulnérable.”
Jacques STERN (La Recherche Juin 2008).

1.1 Définitions

La cryptographie est pluridisciplinaire par excellence, carrefour de ’algebre linéaire, de la théorie
des groupes, de la théorie de complexité, de la théorie des nombres, de la géométrie algébrique, de
I’algorithmique et de I'informatique.

La cryptographie est la science qui utilise les mathématiques pour préserver la discrétion des
messages. Elle permet aussi de stocker des informations sensibles ou de les transmettre a travers d’un
canal non sécurisé (comme I'Internet, radio, poste etc).

Le mot cryptographie vient des mots grecs "kruptos” qui veut dire cacher, et graphein qui veut
dire écrire. C’est a dire écrire en langage codé, secret, chiffré.

La cryptographie est pratiquée par des cryptographes.

Le chiffrement ou le cryptage est 'opération qui consiste a transformer un message clair en
un message incompréhensible pour tout intrus. Le message transformé s’appelle message chiffré,
cryptogramme ou message crypté.

Le déchiffrement ou le décryptage est 'opération inverse du chiffrement, elle consiste a trans-
former un message chiffré en un message clair.

Une clef est un parametre permettant des opérations de chiffrement et/ou déchiffrement.

La cryptanalyse est la science qui vise a retrouver le texte en clair sans connaitre la clef. Une
cryptanalyse réussie peut fournir soit le texte clair soit la clef.

Une tentative de cryptanalyse s’appelle attaque.

La cryptologie est la discipline mathématique qui englobe la cryptographie et la cryptanalyse.

Un algorithme cryptographique est un ensemble de fonction mathématiques utilisé pour le
chiffrement et le déchiffrement.

Un crypto-systéme est 'algorithme cryptographique ainsi que toutes les clés possibles et tous
les protocoles qui le font fonctionner.

La robustesse d’un algorithme de chiffrement désigne sa force de résistance aux attaques.
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La cryptographie doit assurer :

- La confidentialité, consiste & rendre I'information inintelligible sauf & ceux de droit. Se résout
par des algorithmes cryptographiques.

- L’authentification : le destinataire doit pouvoir s’assurer de I'origine du message. Un intrus ne
peut passer pour I'expéditeur. Se résout par la signature électronique.

- L’intégrité : le destinataire doit pouvoir vérifier que le message n’a pas été modifié en cours de
route. Un intrus doit étre incapable de faire passer un faux message pour un vrai. Se résout grace aux
fonctions de hachage (fonction qui réduit un message de taille arbitraire en une chaine de taille fixe).

- La non-répudiation (ou non désaveu) : un expéditeur ne doit pas pouvoir nier a tort avoir
envoyé un message.

Un systeme cryptographiques satisfaisant ces 4 propriétés fondamentales s’appelle protocoles

cryptographiques.

1.2 Les principaux crypto-systemes

1.2.1 Cryptographie a clé privée

S’appelle aussi crypto-systeme symétrique. Il est caractérisé par une seule clé partagée entre
I'expéditeur et le destinataire et qui sert au chiffrement et au déchiffrement. Elle doit rester secretes.
Les algorithmes les plus répandus sont : DES, 3DES, IDEA, AES, ...

Ces algorithmes sont basés sur des opérations de transposition et de substitution des bits du texte
clair en fonction de la clé.

La taille des clés est de 'ordre de 128 bits, 256 bits.

L’avantage principal de la cryptographie symétrique est sa rapidité. Son inconvénient principal est

le partage de la clé.

1.2.2 Cryptographie a clef publique

S’appelle aussi cryptographie asymétrique. Elle est caractérisée par deux clés, une clé publique
Py, et une clé privée secrete Sk . La connaissance de Px ne permet pas de déduire Sk.

Les algorithmes se basent sur des concepts mathématiques tels que l'exponentiation de grands
nombres premiers (RSA), le probleme des logarithmes discrets (ElGamal), ou encore le probleme du
sac dos (Merkle-Hellman).

Le principe de ce genre d’algorithme est qu’il s’agit d’une fonction unidirectionnelle, trappe. Une
telle fonction a la particularité d’étre facile a calculer dans un sens, mais difficile voire impossible dans
le sens inverse. La seule maniére de pouvoir réaliser le calcul inverse est de connaitre une trappe.

L’algorithme de cryptographie asymétrique le plus connu est le RSA.

La taille des clés s’étend de 512 bits a 2048 bits en standard.

Le chiffrement symétrique est environ 1000 fois plus rapide que le chiffrement asymétrique.

La distribution des clés est facile car I’échange des clés secretes n’est plus nécessaire. Chaque
utilisateur conserve sa clé secrete sans jamais la divulguer. Seule la clé publique est distribuée. La

connaissance de la clé publique ne permet pas de déduire la clé secrete.

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi
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1.3 La cryptanalyse

Il y a quatre niveaux d’attaques. Chacune suppose la connaissance complete de ’algorithme de
chiffrement. Oscar étant 'attaquant.
Niveaux d’attaques possibles :
1 Texte chiffré connu : Seul C est connu d’Oscar
2 Texte clair connu : Oscar connait C et M correspondant
3 Texte clair choisi : 8M, Oscar peut obtenir C
4 Texte chiffré choisi : 8C, Oscar peut obtenir M

Algorithmes d’attaques

1 Attaque brutale : Enumérer toutes les valeurs possibles de clefs.
2 Attaque par séquences connues : deviner la clef si une partie du message est connue ex : en-tétes de
standard de courriels
3 Attaque par séquences forcées : faire chiffrer par la victime un bloc dont l'attaquant connait le
contenu, puis on applique ’attaque précédente ...
4 Attaque par analyse différentielle : utiliser les faibles différences entre plusieurs messages (ex : logs)

pour deviner la clef

1.3.1 Attaque sur le texte chiffré connu

Le cryptanalyse dispose du texte chiffré de plusieurs messages, qui ont été chiffré avec le méme
algorithme. on recherche le texte clair et/ou la clé. On procede par analyse de fréquence des lettres
utilisées dans le texte chiffré.
1.3.2 Attaque a texte clair connu

Etant donné un texte chiffré et un fragment de texte clair associé, on recherche le texte clair restant
et/ou la clé. On procede par force brute,
1.3.3 Attaque sur un texte clair choisi

Le cryptanalyse peut choisir un texte clair M et obtenir le texte chiffré associé.

1.3.4 Attaque sur le texte chiffré choisi

Le cryptanalyse peut choisir un texte chiffré et obtenir le texte déchiffré associé M.

1.4 Algorithme publié et algorithme secret

1.4.1 Algorithme secret

De tels algorithmes sont utilisés par un plus petit nombre d 7utilisateurs. Donc il y a d’intéréts a

le casser. Il est impossible de garder un Algorithme secret pour longtemps.

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi
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1.4.2 Algorithme publié

Tout le monde a le droit de I’explorer. Ainsi, les failles peuvent étre plus facilement découvertes. La
sécurité est donc améliorée. Ce qui permet aussi une standardisation générale. Les algorithmes publiés

sont de loin les plus utilisés.

1.4.3 Principe de Kerckhoffs

En 1883 A. Kerckhoffs [?] a posé les principes de la cryptographie moderne : La sécurité d’un
systeme cryptographique ne doit pas reposer sur la non divulgation de ’algorithme de chiffrement
utilisé mais uniquement sur la non divulgation des clés utilisées.

Autrement dit aucun secret ne doit résider dans 'algorithme de chiffrement mais plutét dans la
clé. Ce principe est bien évidemment toujours d’actualité.

L’algorithme de confidentialité, jamais rendu public officiellement, de la norme GSM a été dévoilé et
publié sur I'Internet. Il en est de méme pour la RFID (Radio Frequency Identification ou identification
par radio-fréquence) De nombreuses voitures integrent un systémes anti-vol, fondés sur la technologie
RFID, relié au systeme d’injection de carburant.

Un systeme cryptographique ou un crypto-systéeme est la donnée de :

- un ensemble fini P appelé 'espace des textes clairs ;

- un ensemble fini C appelé 'espace des textes chiffrés ou cryptogrammes;

- un ensemble fini I appelé l'espace des clefs;

- pour tout k£ € K, une fonction de chiffrement ey : P — C et une fonction de déchiffrement dy : C — P
telles que droer, = Idp.

Pour utiliser un tel crypto-systeme I'émetteur et le destinataire doivent se mettre d’accord sur une
clef qu’ils doivent conserver secréte. L’émetteur envoie un cryptogramme C' = £(k,m) au destinataire
qui calcule D(k,C) = M pour retrouver le message clair m.

Un crypto-systeéme est mono-alphabétique si une méme lettre dans le texte clair est toujours chiffré

en la méme lettre du cryptogramme.

1.5 Quelques crypto-systemes historiques

Par Zyg on note 'anneau des entiers modulo 26 soit {0, 1,--- ,25}. On représente chaque lettre par

son ordre dans 'alphabet : a, b, ¢ ... z par les nombres 0, 1, ..., 25.

1.5.1 Chiffrement par décalage

P=C =K =7y, pour 0 < k <25 ex(x) =+ k mod26 et di(y) =z — k mod 26 ou x,y € Zgg.
Le chiffrement de César est un cas particulier de ce chiffrement, il suffit de prendre k = 3. Il est d’'une

sécurité tres faible, en moyenne et par recherche exhaustive on a 13 essais.

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi
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1.5.2 Chiffrement affine

Par Z3g on note le groupe multiplicatif des éléments inversibles dans Zgg. On pose P = C' = Zgg,
K = Zg x Zag pour k = (a,b) € K eg(z) = ax + b et di(y) = a~*(y — b). On montre que facilement
que ey, est une fonction de chiffrement si elle est injective ce qui revient a dire que a est inversible dans
I'anneau Zog.

Par exemple si (a,b) = (3,5) on a egx(x) =3z +5 et di(y) = 9(y + 21)

Il y a 12 x 26 = 312 clés possibles, c’est peu!

1.5.3 Chiffrement par substitution

P = C = Zys, K = Sy 'ensemble des permutations de 1’ensemble {0,1,---,25} on |K| = 26! si
7 € K ex(z) = m(z) et dr(y) = 7 (y). Le nombre de clefs est 26! soit un peu plus de 4 x 10%. La
recherche exhaustive est difficile mais il y a une autre méthode. Le chiffrement par décalage est un cas
particulier du chiffrement par substitution.

Dans les chiffrements vus a présent, un caractere est toujours chiffré de la méme fagon. On dit
que ces chiffrements sont mono-alphabétique. Contrairement aux chiffrements ci-dessus, dans les
chiffrements ci-dessous et dans un méme message, un caractere est chiffré de plusieurs fagons On

I’appel chiffrement poly-alphabétique.

1.5.4 Chiffrement de Vigenere

Mis au point en 1586 par Blaise de Vigeneére, un diplomate frangais. Soit m un entier > 0. P = C =
K =7%.S1k=(ki, - ,kpn) € K alors eg(z1, -+ ,xm) = (@1 + k1, T + k) et di(y1, -+, ym) =
(y1 — k1, -+ ,Ym — km). Le nombre de clé est 26™, par exemple pour m = 5, 26™ est environ 1,1 x 107.
A la main c’est difficile, mais & la machine c’est tres facile. Ce chiffrement est poly-alphabétique. Un

caractere peut étre chiffré de m fagons.

1.5.5 Chiffrement de Hill (1929)

L. Hill, mathématicien cryptographe (1891-1961). Soit m un entier > 0. P = C = Z%, K =

G Ly, (Zsg le groupe des matrices mxm inversibles et & coefficients dans Zog. Soit k =€ K, e (x1, -+ ,Tpm) =
(iEl, U ,.Im)ki et dk(yla to aym) = (yla o ?ym)k_l‘
1.5.6 La machine ENIGMA
m =3 et k= (3,1,2) le texte clair cryptographie est chiffré en?
Montrer que
1.5.7 Masque jetable (One time pad)

Mis au point par Vernam en 1917. Utilisé pour le téléphone rouge entre Moscou et Washington
pendant la guerre froide. Il a aussi servi a chiffrer les messages télégraphiques. Le probleme de dis-

tribution de clef a été résolu par la valise diplomatique. Mais pour d’autres utilisations il est peu

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi
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pratique. En fait, la clé est aussi longue que le message a chiffrer. En 1941, C. Chanon a montré que
ce chiffrement est impossible & casser.

Soit K une clé et M le message a chiffrer. Ils sont de méme longueur. On écrit M et K en binaire,
par exemple en ASCII. On a on obtient le cryptogramme C' = M & K. Ayant la clé K, le destinataire
calcule C @ K pour obtenir M.

Pour chiffrer M = RDV A DIX H, on convertit ce message en binaire en utilisant le code ASCII,

0101001001000100010101100010000001000001001000000100010001001001010110000010000001001000

et on consideére la clé K = MERCI BIEN. (y compris le point) soit en code ASCII

0100110101000101010100100100001101001001001000000100001001001001010001010100111000101110

C=KoM=
et pour déchiffrer C ¢ K=

Montrer que

1.5.8 Chiffrement par permutation (transposition)

Dans ce chiffrement, les caracteres ne change pas, mais ils sont réordonnés. Soit P = C' = Z5§ ou'm
est un entier > 1 et K est 'ensemble des permutations de {1,2,--- ,m}. Pour o € K e, (x1, -+ , &) =
(To(), s To(m)) € do(Y1, s Ym) = (Yo-1(1)s" "+ »Yo—1(m))- Ce chiffrement consiste & conserver les

mémes caracteres du texte clair et on applique une permutation a chaque groupe de m caracteres.

1 23 456
g =
6 5 4 3 21

Le chiffrement de cryptography donne otpyrcyhparg Le chiffrement par permutation est un cas

Pour m = 6 et

particulier du chiffrement de Hill. En fait a toute permutation on peut associer une matrice (a;;) de
taille m x m donnée par
1 sii=mn(y)
CLZ‘j = )
0 sinon

le chiffrement avec K, est équivalent au chiffrement de Hill? K-! = K1
?

Montrer que

1.5.9 Le carré de Polybe

Polybe est un historien grec qui a vécut aux environs de -205 avant JC a -125 av. JC

L [1]2]3]4]5]
1/A|B|Cc|DI|E
olFrlclH|LI|K
slLI{M|N|[O|P
4lQlrR|s|T]U
slviwlx|y |z

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi
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lettre | fréquence | lettre | fréquence
a 6,16 n 6,02
b 0,40 0 5,12
C 9,35 P 2,92
d 3,86 q 0,62
e 18,61 T 5,35
f 2,24 S 6,96
g 1,79 t 7,41
h 1,48 u 5,03
i 6,35 v 1,03
j 0,04 w 0,35
k 0,13 X 0,36
1 5,26 y 1,39
m 1,97 z 0,04

TABLE 1.1 — Table des fréquences relatives des lettres en francais.

Pour chiffrer un texte on remplace chaque lettre par ses coordonnées dans le tableau, en écrivant
d’abord la ligne, puis la colonne. Par exemple, le A est remplacé par 11, le B par 12, le F par 21, le
S par 43 etc. Si nous codons FEU nous obtenons 211545. Remarquons que nous pouvons remplir le

tableau de plusieurs facons différentes.

1.5.10 Cryptanalyse des crypto-systéemes monoalphabétiques

Une méthode de cryptanalyse un crypto-systeémes est d’explorer ’espace de toutes les clés possibles.
C’est ce qu’on appelle cryptanalyse exhaustive.

D’apres un document rédigé et retrouvé en 1987 a Istanbul, Abu Yusuf Ya'qub ibn Is-haq ibn
as-Sabbah Oomran ibn Ismail al-Kindi (801-873) savant arabo-musulman du neuvieme siecle, dans
son traité intitulé ” Manuscrit sur le déchiffrement des messages cryptographiques” a décrit la crypta-
nalyse par la fréquence d’apparition des lettres. C’est le premier manuscrit connu faisant mention des
fréquences d’apparition des lettres.

Il explique que ”la facon d’élucider un message crypté, si nous savons dans quelle langue il est
écrit, est de nous procurer un autre texte en clair dans la méme langue, de la longueur d’un feuillet
environ, et de compter alors les apparitions de chaque lettre. Ensuite, nous nous reportons au texte
chiffré que nous voulons éclaircir et relevons de méme ses symboles. Nous remplacons le symbole le plus
fréquent par la lettre premiere (la plus fréquente du texte clair), le suivant par la deuxieme, le suivant
par la troisieme, et ainsi de suite jusqu’a’a ce que nous soyons venus a bout de tous les symboles du
cryptogramme a résoudre”. Cette technique est appelée analyse des fréquences.

Il est aussi intéressant d’étudier la fréquence d’apparence de quelques diagrammes ou trigrammes

en francais la, le, ent, tion etc en anglais th, in, an the, ing etc.

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi
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N
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s
=
=

FIGURE 1.2 — Mode de chiffrement CBC

1.6 Modes de chiffrement par bloc

Il y a quatre modes de chiffrement par bloc : ,

1.6.1 Le mode ECB (Electronic CodeBook)

C’est le mode le plus simple. Voir [L1l Le message a chiffrer est découpé en blocs. Chaque bloc
est chiffré indépendamment des autres. ce mode est vulnérable aux attaques. les bloc qui se répetent
sont chiffré de la méme facon. Permet de paralléliser les calculs. Voir [Tl Il n’est pas utilisé dans la
pratique. Mais il peut étre utilisé pour le chiffrement de mots de passe.

Un attaquant peut permuter des blocs, ou remplacer un bloc par autre sans que le destinataire ne

s’en apergoive.

1.6.2 Le mode CBC (Cipher Block Chaining)

Voir On fixe une valeur initiale yg qui peut étre choisie aléatoirement et partagée en clair.
yi = ex(yi—1 ® 1) pouri>1

En plus de la clé les correspondants partagent la valeur initiale yg. Avant de chiffrer un bloc on le xor
avec le chiffré du bloc qui le précede. C’est d’ailleurs le mode le plus courant. Il rend le chiffrement plus
complexe en créant une dépendance entre les blocs successifs. Mais Il est impossible de paralléliser le
chiffrement.

Pour le déchiffrement en mode CBC voir [L3]

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi
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FIGURE 1.3 — Mode de déchiffrement CBC
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FIGURE 1.4 — Mode de chiffrement OFB

1.6.3 Le mode OFB (Output FeedBack)

C’est une variante du mode CFB qui permet d’avoir un chiffrement totalement symétrique. Peu

utilisé, voir [[L4l ¢y une valeur initiale et pour ¢ > 1 le bloc m; est chiffré comme
¢ =m; ®eg(ci—1)

Ce mode est utilisé pour des transmissions sur des canaux bruités. Par exemple transmission

satellitaire.

Le déchiffrement est donné par ¢; = eg(c;—1) et m; = ¢; ® ex(ci—1)

1.6.4 Le mode CFB (Cipher FeedBack)

Voir On commence par une valeur initiale ¢y, puis on chiffre le bloc clair m; comme
ci =m; Deg(ci—1) pouri>1

Le mode CFB est une fagon de transformer une fonction F en un chiffrement par flot auto-

synchronisant.
usage possible en signature et en chiffrement réseau.

Le déchiffrement, voir [LE ne nécessite pas d’utiliser la fonction de déchiffrement, en effet m; =

c; © ex(c;—1) avec cg est valeur initiale.

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi



CHAPITRE 1. INTRODUCTION A LA CRYPTOGRAPHIE 14

my

|IV:z0|—>[ ex, 4‘—>
C1 J C

FIGURE 1.5 — Mode de chiffrement CFB
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FIGURE 1.6 — Mode de déchiffrement CFB
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1.6.5 Le mode CTR (Counter-mode encryption)

Ce mode utilise pour le chiffrement un compteur de valeur initiale vg. Il est totalement symétrique.
Il a de nombreux avantages : le chiffrement par flot, 'accés aléatoire aux données, parallélisable et
n’utilise que la fonction de chiffrement. Le compteur utilisé peut étre une suite pseudo-aléatoire qu’il
sera facile de retrouver a partir de la graine (vecteur d’initialisation).

Un bloc m; est chiffré comme

c; = m; @ eg(vo + 1)

Le déchiffrement se fait par

m; = ¢; @ Ex(vo + 1)

Les différents calculs de chiffrement et de déchiffrement sont indépendants, comme pour le mode

ECB, mais un méme bloc n’est jamais chiffré de la méme fagon.

1.7 Cryptographie symétrique et asymétrique

Il existe deux grands types de cryptographies :
- la cryptographie symétrique, (conventionnelle ou chiffrement & clef secréte) regroupe les algo-

rithmes pour lesquels expéditeur et destinataire partagent une seule et méme clef utilisée a la fois pour

5

le chiffrement et le déchiffrement.

FIGURE 1.7 — Le mode de chiffrement CTR
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La cryptographie a clé secrete peut se classer en deux catégories :

1) les systemes de chiffrement par bloc.
2) les systemes de chiffrement a flot.

Un systeme de chiffrement par bloc opére sur des blocs de texte clair de taille fixe, et renvoie des
blocs de texte chiffré de taille fixe (en général de méme taille).

Un systeme de chiffrement a flot opére sur les caractéeres individuels du texte clair par une trans-
formation dépendant de la clé et de la position.

Le probléme étant qu’on doit disposer d’'un moyen sécurisé pour échanger la clef.

Ce chiffrement a des avantages. Il est tres rapide. Il est particuliérement utile pour chiffrer des
données a archiver. Cependant, ce type chiffrement seul est inadéquat au transmission de données
sécurisées, simplement en raison de la difficulté de la distribution sécurisée de la clef.

- la cryptographie & clef publique évite le partage d’un secret entre 'expéditeur et le destinataire
il suffit & ’émetteur de chiffrer le message avec la clef publique du destinataire. Ce dernier, a ’aide de
la clef secrete correspondante, est seul en mesure de déchiffrer le message recu.

Toute personne en possession d’'une copie de votre clé publique peut ensuite chiffrer des informa-
tions que vous seul pourrez lire. Méme des gens que vous n’avez jamais rencontrés.

Le principal avantage de la cryptographie a clé publique est qu’elle permet a des gens qui n’ont
pas d’accord de sécurité préalable d’échanger des messages de maniere sure.

Les problemes de distribution de clef sont résolus par la cryptographie a clef publique, dont le
concept fut inventé par Whitfield Diffie et Martin Hellman en 1975. Mais dans 77 il est établit que les
Services secrets britanniques étaient les premiers a I'inventer.

Il y a des crypto-systémes combinent a la fois les meilleures fonctionnalités de la cryptographie

symétrique et de la cryptographie asymétrique. un tel crypto-systeme s’appelle crypto-systeme hybride.

1.8 Signatures numériques

Un des avantages majeurs de la cryptographie a clé publique est qu’elle offre une méthode permet-
tant d’utiliser des signatures numériques. La signatures numérique permet de controler I'authenticité,
Iintégrité du message, et la non répudiation. Ces éléments sont au moins aussi importants que le
chiffrement des données, sinon davantage. Une signature numérique a le méme objet qu’une signa-
ture manuelle. bien qu’une signature manuelle est facile a contrefaire. Une signature numérique est
pratiquement impossible a contrefaire et, de plus, elle atteste le contenu de 'information autant que

I'identité du signataire.

1.9 Stéganographie

La stéganographie (du grec steganos, couvert et graphein, écriture) dissimule l’existence méme de
I'information secrete (encre sympathique etc...). c’est art de cacher un message au sein d’un autre
message de caractere anodin, de sorte que I'existence méme du secret en soit dissimulée. Alors qu’avec

la cryptographie habituelle, la sécurité repose sur le fait que le message ne sera sans doute pas compris.
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On peut cacher des messages dans des images jpeg, de fichiers mp3 ou des films. Jadis on utilisait

I’encre sympathique etc...

1.10 Exercices

Exercice 1. Chiffrer une phrase & ’aide du carré de Polybe. Faites-la déchiffrer par votre voisin de

classe.

Exercice 2. Soit le chiffrement ky = K € Zyg et k; = x;—1 pour tout message x = (x1,x2,--+). On
définit Ey(z) = + k mod 26 et D(y) =y — k mod 26.
Décrypter le chiffré suivant : MALVVMAFBHBUQPTSOXALTGVWWRG.

Exercice 3. Une recherche exhaustive de la clé dans le cas du systéeme de Vernam a-t-elle un sens?

Expliquez votre réponse.

Exercice 4. On considere une fonction de chiffrement par bloc de longueur 2 pour des clefs de longueur
2 donnée par
& {0,1}2 — {0,1}?
(ml,mg) — Sl((ml P k1,mo B kg))

ou la fonction S; est décrite ci-dessous

X [0,0] | [1,0] | [0, 1] | [1, 1]
Sl(X) [17 1] [17 0] [07 0] [07 1]

1. Chiffrer le message M =[0,1,1,1,0,1] avec la clef K = [1,0]

a) En utilisant le mode ECB,

b) En utilisant le mode OFB,

2. Déchiffrer le messageC = [0,1,1,1,0,1] dans le cas ou il a?eté chiffré avec la clefK = [1,1] et
a) en utilisant le mode CBC,

b) en utilisant le mode CFB.
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Chapitre 2

DES (Data Encryption Standard)

2.1 Introduction

HISTORIQUE :

Avant 1975 : chiffrements artisanaux (Vigenere, Hill).

1975-2000 : le DES (Data Encryption Standard), mais aussi FEAL, IDEA, RC5, ...

2000 ...7 AES (Advanced Encryption Standard), RC6, CAMELLIA, ...

Au début des années 1970, le développement des communications entre ordinateurs a nécessité la
mise en place d’un systeme de chiffrement standard.

DES est (Data Encryption Standard), et en francais Standard de Chiffrement de Données. C’est un
systeme de chiffrement par blocs et a clé secrete. Congu par IBM en 1975 suite a un appel d’offre de la
NSB (pour National Bureau of Standards) actuellement NIST (pour National Institute of Standards
and technology) des Etats Unis en 1973 pour la mise au point d’un systéme de cryptographie.

Le cahier des charges spécifiait que la sécurité devrait étre liée a la clef, et ne devait pas dépendre
de la confidentialité de l’algorithme par application du principe de Kerckhoffs en plus de la confusion
et de la diffusion. Pour rappel, C. Shannon a montré que la combinaison de confusion et diffusion
permettait d’obtenir une sécurité convenable. La confusion consiste a masquer la relation entre le
clair et le chiffré. Alors que la diffusion consiste a chaque bit de texte clair d’avoir une influence sur
une grande partie du texte chiffré. Ce qui signifie que la modification d’un bit du bloc d’entrée doit
entrainer la modification de nombreux bits du bloc de sortie correspondant.

La NSA (National Security Agency) participa a I’évaluation de cet algorithme. DES est soumis a
I’évaluation des chercheurs de ce domaine.

11 est adopté comme standard en 1977 apres lui avoir apporté des modifications par le NSA (Na-
tional Security Agency). Il est re-évalué tous les cing ans par le NBS. Il était le systeme le plus utilisé
dans le monde jusqu’a la fin des années 1990. Il a résisté aux différentes attaques pendant un quart de
siecle. Il a été utilisé dans les transactions bancaires. Il est utilisé pour chiffrer les mots de passe des
systemes Unix.

DES chiffre par bloc de 64 bits en utilisant une clef de 56 bits, augmentée par 8 bits de parité,
pour obtenir un bloc de texte chiffré de 64 bits. DES est réalisé en 16 tours ou itérations. Voir 2.]]

La clef de 64 bits est utilisée pour générer 16 autres clefs de 48 bits chacune qu’on utilisera lors

17
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| Bloc clair - 64 bits |

Premier tour - 64 bits |

Dérivation

RSB (de 16 sous-clés k.
de 48 bits

Deuxiéme tour - 64 bitsl
|

Kig—— -
Seizéme tour - 64 bits |

Bloc chiffré - 64 bits |

FIGURE 2.1 — Fonctionnement du DES

de chacun des 16 tours du DES. Ces clefs sont les mémes quel que soit le bloc qu’on chiffre dans un
message.

L’algorithme DES est simple, il ne combine que des permutations et des substitutions. On parle
en cryptologie de techniques de confusion et de diffusion.

De plus, DES est relativement facile a réaliser matériellement et certaines puces chiffrent jusqu’a
1 Go de données par seconde.

Ainsi, DES est congu de manieére a ce qu'une légere modification dans la clé ou dans le texte clair
se traduit par des changements trés importants dans le texte chiffré.

Si on note par P, C' et K ’ensemble des blocs clairs, I’ensemble des blocs chiffrés et I’ensemble des
clés, respectivement, alors P = C' = {0,1}%* et K = {0,1}°6. A chaque clé de 56 bits, on ajoute 8 bits
de parité de tel facon qu’elle devienne b1bs . .. bgy avec 223:1 bgkri = 1 mod 2,0 < k < 7. Le nombre
de clés est 26, soit environ 7.2 x 1016,

Le DES a plusieurs avantages qui ont fait de lui un standard pendant longtemps :

il posseéde un haut niveau de sécurité,

il est completement spécifié et facile & comprendre,

la sécurité est indépendante de I'algorithme lui-méme, elle ne dépend que de la clé,

il est rendu disponible a tous, par le fait qu’il est publique,

il est adaptable a diverses applications (logicielles et matérielles),

il est rapide et exportable,

il repose sur une clé relativement petite, qui sert a la fois au chiffrement et au déchiffrement,

il est facile a implémenter.

2.2 Ingrédients

Dans cette section, nous décrivons, séparément, toutes les opérations qu’utilise DES.
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58 | 50 | 42 | 34 | 26 | 18 | 10
62 | 54|46 | 38 | 30 | 22 | 14
57 149141 133 (25|17 | 9

61 | 53 | 45| 37|29 |21 |13

60 | 52 | 44 | 36 | 28 | 20 | 12
64 | 56 | 48 | 40 | 32 | 24 | 16
59 | 51 |43 |35 | 27|19 | 11
63 | 55 |47 |39 |31 |23 |15

N | W |00 | &

(G20 I e I )

TABLE 2.1 — La permutation IP

40 | 8 | 48 |16 | 56 | 24 | 64| 32|39 | 7|47 | 15|55 |23 |63 |31
38 1646 |14 |54 2262|3037 5|45 (13|53 |21 |61 |29
36 |4 (44112522060 |28|35 |3 |43 |11 |51|19]|59 |27
34124211050 | 18|58 (26|33 (1|41 9 (4917|5725

TABLE 2.2 — La permutation IP~!

2.2.1 La permutation IP et son inverse [P~}

La permutation IP (pour initiale permutation) est définie de {0,1}%* — {0,1}5* par la Table 1]
qui se lit de gauche a droite et de haut en bas. Un nombre dans la table indique la position du bit
avant permutation et sa position dans la table indique son image aprés permutation.

Par exemple : le 58° bit d’une chaine x de 64 bits est le premier bit de IP(x) et le 50° bit de x est
le deuxieme bit de IP(z) etc- - -

Siz =by---bgy alors IP(x) = bsgbspbaz - - - by

L’inverse IP~! de IP(x) est définie par le Table

Siz=by--bgy alors IP~1(x) = byobgbys - - - byrbos.

Les permutations IP(x) et IP~! n’affectent en rien la sécurité du DES. Elles sont utilisées pour
rendre plus facile le chargement du texte clair ou du texte chiffré dans une puce DES, car DES est

arrivé avant les microprocesseur 16 ou 32 bits.

2.2.2 L’expansion &

La transformation £ : {0,1}32 — {0,1}® est donnée par la table 23l € permet d’étendre une
chaine = de 32 bits en un bloc de 48 bits en doublant certains bits. Par £, x = b1by - - - bgy est transformé

en
E(x) = b3aby - - - bybsbabsbg - - - b31b32b1
en répétant certains bits.

Le premier bit de £(x) est le 32e bit de z, son 2e bit est le premier bit de x etc

2.2.3 Les S-Box

Le ”S” est pour substitution. Les lignes et colonnes de tous les S;-Box, 1 < i < 8, sont numérotées

a partir de 0 et sont en caracteres gras.

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi



CHAPITRE 2. DES (DATA ENCRYPTION STANDARD) 20

32

8
819 |10]11 12|13
12 |13 | 14 | 15| 16 | 17
16 | 17 | 18 | 19 | 20 | 21
2021222324125
24125126 |27 28|29
28012913031 (32| 1

TABLE 2.3 — L’expansion £

1671202112912 |28 (17| 1 | 15|23 26| 5 |18 |31 | 10
218124114 (321273 |9 (191330 6 [22]11] 4 |25

TABLE 2.4 — La permutation P

Comment agit un S;-box ? Les S; : {0,1}° — {0,1}* pour 1 < i < 8. Chaque S;-Box associe & un
bloc B = b1byb3bsbsbg un bloc de 4 bits :
— Dentier représenté par b1bg apres 'avoir transformé en décimal sélectionne une ligne de S;-box et
— Dentier représenté par bobsbybs apres 'avoir transformé en décimal indique une colonne de S;-box.
La valeur de S;(B) est la représentation en binaire de U'entier inscrit dans la position indiquée par la

ligne et la colonne dans la S; — box.

Exemple. En utilisant S1-Box. Soit B = b1babsbsbsbg = 010011 alors la ligne est b1bg = 01 = 1 en
décimal et la colonne est babsbybs = 1001 en décimal c’est 9, la valeur de S;(B) = 6 ou 0110 en binaire
et donc S1(010011) = 0110.

La sécurité de DES repose sur ces tables S;-Box de substitutions non linéaires tres efficaces pour

diluer les informations.

2.2.4 La permutation P

La permutation P est donnée par la Table 24l Pour x = b1bs...b32, P(x) = b16by ... b25.

Par exemple sous l'action de P le bit 16 va en position 1, le bit 2 va en position 17.
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0 1 2 3| 4 5 6 7 8 9 10 ( 11 | 12 | 13 | 14 | 15
0| 14 4 13 |1 2 15 | 11 8 3 10 6 12 5 0 7
Table S1-Box | 1| 0 |15 7 | 4|14 | 2 |12] 1 |10] 6 |12|11] 9 3 8
2 4 1 14 | 8 | 13 6 2 11 | 15 | 12 9 7 3 10 5 0
3| 15| 12 8 2 4 9 1 7 5 11 3 14 | 10 0 6 13
0 1 2 3 4 5 7 8 9|10 | 11 | 12 | 13 | 14 | 15
0| 15 1 8 14 6 11 4 9 7 2 13 12 0 5 10
Table S2-Box | 1 3 13 4 7 15 2 14112 |0 1 10 6 9 11 5
2 0 14 7 11 | 10 4 13 1 5 8 | 12 6 9 3 2 15
3| 13 8 10 1 3 15 4 2 11 | 6 7 12 0 5 14 9
0 1 2 3 |4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
0] 10 0 9 1416 3 15 5 1 13 | 12 7 11 4 2 8
Table S3-Box | 1 | 13 7 0 9 3 4 6 10 2 8 14 12 11 15 1
2|13 6 4 9 8 | 15 3 0 11 1 12 5 10 | 14 7
3 1 10 | 13 0 6 9 8 7 4 15 | 14 3 11 5 2 12
0 1 2 (3| 4 5 6 7 8 (910 |11 |12 | 13 | 14 | 15
0 7 13| 14| 3 0 6 9 10 1 2 8 5 11 12 4 15
Table S4-Box | 1 | 13 8 11 | 5 6 15 0 3 4 7 2 12 1 10 14 9
2|10 6 9 012 11 7 13115 |1 3 14 5 2 8 4
3 3 15 0 6 | 10 1 13 8 9 4 5 11 12 7 2 14
0 1 2 3 4 5 6 7 9 10 { 11 | 12 | 13 | 14 | 15
0 2 12 4 1 7 10 | 11 6 5 3 15 | 13 0 14
Table S5-Box | 1 | 14 | 11 2 12 4 7 13 1 0 15 | 10 3 9 8
2 4 1 11 | 10 | 13 7 8 15 9 12 6 3 0 14
3|11 12 7 1 14 2 13 6 15 0 10 4 5 3
0 1 2 3 |4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
0| 12 1 10| 15| 9 2 6 8 0 13 3 4 14 7 11
Table Se-Box | 1 | 10 | 15 4 7 12 9 5 6 1 13 14 0 11 8
2 9 14 | 15 2 8 12 3 7 0 4 10 1 13 | 11 6
3 4 3 2 12 | 9 5 15|10 | 11 | 14 1 7 6 0 8 13
0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
0 4 11 2 14115 (0 8 13 3 12 9 7 10 6 1
Table S7-Box | 1 | 13 0 11 7 4 9 1 10 | 14 3 5 12 15 8 6
2 1 4 11 |13 |12 | 3 7 14 | 10 | 15 6 8 9 2
3 6 11 | 13 8 1 4|10 7 9 5 0 15 | 14 3 12
0 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
0| 13 8 4 6 15 | 11 1 10 9 3 14 0 12
Table Ss-Box | 1 1 15|13 8| 10| 3 7 4 112 | 5 11 14 9
2 7 11 4 1 9 12 | 14 2 0 6 10 | 13 | 15 3 5
3 2 1 14| 7 4 10 8 13 | 15 | 12 9 0 3 5 6 11
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2.2.5 La fonction f

La fonction f : {0,1}3? — {0,1}32 est définie en utilisant la fonction d’expension &, tous les
S;-box et la permutation P. Voir la Figure C’est une fonction de confusion.

Soit R;_1 et K; deux chaines de bits de longueurs 32 et 48 bits respectivement.

On commence par effectuer une opération de ou exclusif entre £(R;_1) et K;. On scinde ensuite le
résultat de cette opération £(R;) @ K; en huit blocs de 6 bits chacun, soit By, - , Bg. Ainsi £(R;—1) @
K; = B1.By---Bg. A chaque B; , j = 1---8 on applique une fonction de substitution S;-Box qui
renvoie un bloc de 4 bits en sortie S;(B;).

Les 8 blocs de 4 bits obtenus C; = S1(By), C2 = Sa(B2) --- Cs = Sg(Bsg) sont ensuite concaténés

en un bloc de 32 bits auquel on applique la permutation P.

f(Ri—1, K;) = P(S1(B1)Sa(Ba) - - - Ss(Bs))

| R 32 bits | K; 48 bits
Expansion
| E(R;_1) 48 bits
| N
L/
6 bits |6 bits |6 bits [[6 bits blts 6 blts 6 bits [6 bits
B | B | B | By B, | Bs

5 ) (Se ) Lso ) [Lss )

\

Cs | Cq Cs C

2 |Cs | Ca
4 bitq 4 bitq 4 bitg| 4 bitq 4 bitq 4 bit: 4b1t 4 bit

b7 —

| F(Ri_1, K;) 2 vis

FIGURE 2.2 — Description de la fonction f

2.2.6 Les transformations PC1 et PC2

La permutation PC1 ”permuted choice 17 est définie PC1 : {0,1}%% — {0,1}?8 x {0,1}8 et
donnée par la Table ou on remarque ’absence de 8, 16, ..., 64, ce qui signifie que les bits dans les
positions 8,16,24 - - - 64 sont ignorés tout simplement.

La transformation PC2 s’appelle ”permuted choice 27, elle est définie PC2 : {0,1}2% x {0,1}?% —
{0,1}*® et donnée par la Table

La permutation PC?2 agit sur un bloc de 56 bits pour produire un bloc de 48 bits. Par exemple,
le bit en position 33 est envoyé dans la position 35 en sortie. Les bits dans les positions 9, 18, 22, 25,
35, 38, 43, 54 sont ignorés.
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97 (49 |41 133 (25 |17 9 | 1 |58 |50 |42 |34 |26 18
10 2 |89 |51 433527 |19 11| 3 | 60|52 |44 | 36
63 | 55 | 47 |39 (3123 |15 | 7 | 62|54 |46 |38 |30 22
141 6 |61 53|45 37129 |21 |13 |5 |28]20(|12| 4

TABLE 2.5 — Transformation PC1

M4 117 (111241 |5 |3 (28|15 6 |21]10
2311912 4 26| 8 |16 | 7 |27 |20 |13 | 2

41 | 52 | 31 | 37 | 47 | 55 | 30 | 40 | 51 | 45 | 33 | 48
44 149 | 39 | 56 | 34 | 53 | 46 | 42 | 50 | 36 | 29 | 32

TABLE 2.6 — Transformation PC2

2.2.7 Les rotations circulaires LS;, i =1,---,16

LS; est une rotation circulaire vers la gauche d’une ou deux positions (en fonction de la ronde 7)
agissants sur une chaine de 28 bits. Si ¢ = 1,2,9,0ul6 on décale d’'une position sinon on décale de
deux positions.

Par exemple LSy (b -+ - bog) = babs - - - baghy et LS3(by - - bag) = bgby - - - baghybo

2.3 Diversification de la clé

Une clef K est une chaine de 56 bits, a laquelle on ajoute 8 bits de parité. Ils sont des bits de
détection d’erreurs. Les bits en positions 8, 16 --- et 64 sont tels que chaque octet de la clé K contient
un nombre impair de 1. Les bits de parité sont ignorés dans le procédé de diversification de la clef.

Ce procédé permet de créer 16 sous clés K;,¢ = 1,--- ,16. Chaque K; est utilisé dans le :¢"*¢ tour
de fonctionnement de DES.

Chaque clé de tour K; contient un sous ensemble différent des 56 bits de la clé. Soit K une clef

sans bit de parité. On applique PC1 a K et on écrit
PC1(K) = CyDyg

ou Cj est formé des 28 premiers bits de PC'1(K) et Dy du reste. puis pour ¢ = 1,--- , 16 on définit
C; = LS;(Ci—1)

Dz’ = LSZ‘(Dz;l)

et les permutations circulaires LS; vers la gauche permettent de construire les clés de tour K;,i =
1,---,16.
K; = PC2(C;D;),i=1,---,16

Ainsi, pour chaque tour, on utilise une clé différente K;, i = 1,--- ,16 de 48 bits obtenue a partir de

la clé initiale K de 64 bits. Voir 2.3l
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K (64 bits)

PC1

| Co (28 bits) Dg (28 bits) |

LS, LS,

|| lil l_’[PCQ ]_’| K (48 bits)

| Cie || D¢ F{PC2—~  Kig asbvis |

FIGURE 2.3 — Diversification de la clef dans DES

2.4 Etapes de chiffrement

Voir la Figure ??7. Soit Un message M de 64 bits. Une clé K de 56 bits. La sortie est un crypto-
gramme C' de 64 bits. Voir Figure 2.4.

1) On applique la permutation IP & M ensuite on décompose IP(M) en deux mots Ly (gauche) et
Ry (droite) de 32 bits chacun.

IP(M) = LoRy

2) 16 tours de la fonction f sont exécutées (combinaison de substitutions et de transpositions). Les

parties gauches et droites sont modifiées comme il suit pour ¢ =1---15

Li=R; 1

Ri=L;i1® f(Ri—1, K;)

. R;_1 est de 32 bits et K; est de 48 bits de la clé de tour la sortie de f est de 32 bits. L1 = Ris,
Rig = L15 @ f(R1s5, K16).-
3) Enfin, on applique la permutation inverse IP~! & (Ryg, L1g) pour obtenir le texte chiffré C.
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v ¥
Lo . Ro |
I g
>{< o
L1 = Ry | | Ri=Lo® f(Ro, K1) |
I J—
e
| Ly =Ry | | Ro=L1® f(R1,Ks) |
e 'v
| L5 = Ry | | Ris=L14 ® (R4, K15) |
v 7
iB f l K16
| Ri6=1L15 © f(Ris5, Ki6) | | Lig = Ris |
[ |
¥
P!
FIGURE 2.4 — L’algorithme DES
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2.5 Déchiffrement

Le déchiffrement est effectué par le méme algorithme de chiffrement en inversant ’ordre d’utilisation
des clés de tour i.e. Kig en premier, puis K5 etc et enfin K;. Cela est da au fait que la permutation

finale est I'inverse de la permutation initiale et
Ri1=1L;

Li1=R;® f(L;, K;)

L’algorithme qui engendre les clefs est circulaire, et le décalage se fait vers la droite : si ¢ = 1,2,9,0ul6

on décale d’une position sinon on décale de deux positions.

2.6 Controverse

Deux faiblesses principales ont été observées dans la conception du DES :

1) Des clés de 56 bits peuvent étre trop courtes pour assurer une robustesse suffisante ;

2) Les principes de choix des S-box n’ont completement été rendus publique : aucune S;-Box n’est
une fonction linéaire ou affine des entrées. La conception des S-box autoriserait la NSA a effectuer
plus rapidement une cryptanalyse. Personne n’a jamais rien trouvé concernant d’éventuelles propriétés
cachées des boites de substitution Les criteres de constructions des S — Box ne sont pas connus. La
critique sur la taille de la clé devient plus pertinente avec ’accroissement de la vitesse des ordinateurs.

DES est facilement implémentable en matériel ou logiciel. DES a été largement utilisé dans le
domaine des transactions bancaires et des ministeres aux USA. Cryptage de chaines de télévision a
péage. Transmission de données informatiques. Performances Excellentes - cryptage a débits tres élevés

(dizaine/ centaine de Mégabits/seconde).

2.7 Attaques de DES

- Clefs "faibles” : telles que Ey(Eg(z)) = z. Il en existe 4.

- Clefs ”semi-faibles” : ce sont les paires de clefs (K7, K3) dont la deuxiéme peut décrypter un
message chiffré par la premiere. Ce sont les clés telles que Fk, (Ek,(x)) = z. Il existe six paires de ce
genre.

- Clés "pouvant étre faibles” : le probleme est similaire aux clés semi-faibles. Il en existe 48.

256 soit environ 7,2.10'6 possibilités.

La recherche exhaustive de la clé correspondante parmi les

Un processeur Intel Pentium III & 666 MHz, peut examiner environ deux millions de clés par
seconde, ce qui implique un temps de recherche moyen de 600 années pour un seul PC.

EFF (Electronic Frontier Fundation) en 1998 a proposée une solution matérielle dans le seul but
de prouver que DES n’est plus du tout siar. Elle a la possibilité d’examiner 92 milliards de clés par
seconde, ce qui donne un temps de recherche moyen situé entre 4 et 5 jours. En 2003, il suffisait de 4
heures et 120.000 euros.

En 1990, Biham et Shamir, ont présenté une nouvelle attaque, appelée cryptanalyse différentielle.

C’est la premiere attaque non exhaustive et qui exige moins de temps que 'attaque exhaustive.
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Attaque paires connues / choisies | Mémoire | Temps
Pré-calcul 1 256 1
Recherche exhaustive 1 1 255
Cryptanalyse linéaire 243 textes 243
Cryptanalyse différentielle 247 textes 247

TABLE 2.7 — Les meilleures attaques connues contre DES

Une autre attaque théorique importante est la cryptanalyse linéaire. Elle a été proposée par Matsui,
de Mitsubishi Electronics, en 1993. Bien qu’elle ne soit que théoriquement utile, c’est 'attaque la plus
efficace connue a ce jour contre DES.

I1 s’est avéré plus tard que les concepteurs de DES savaient ces attaques. [3]

Grace a la cryptanalyse multi-linéaire, la complexité & été ramené & 239

Suite aux failles apparues dans DES, quelques remaniements ont été apportées, mais pas toujours
avec grand succes. Ce fut notamment le cas avec le 2DES. Le principe du 2DES est de chiffrer deux
fois le message avec deux clefs k1 et ko. Il a été prouvé que 2DES était équivalent a un DES avec une
clé de 57 bits, c’est tout.

Attaque par 'homme au milieu

Le 2DES est sensible a I'attaque de ’homme au milieu. Un intrus peut s’introduire dans I’échange
et retrouver la clé utilisée. Alice transmet C' = fg,(fx,(M)) a Bob. Si 'homme au milieu, Oscar,

connait M et C, il peut construire deux listes de 2°¢ messages
Ly = {fx(M);VE} et Ly = { i (C);VK}

I1 cherche ensuite un élément commun. Si R = fx, (M) = f;(i(C), c’est que f]_(i(fK4(M)) = C. Oscar
a alors probablement trouvé K3 = K7 et K4y = Ky Ainsi, 'attaque nécessite X = 2™ opérations, et
Y = 2" opérations, soit 2.2" = 2"t

2.8 3DES

Grace a 2 clefs, on pratique 3 opérations :
E(/{:l, D(kQ, E(kl, m)))

C’est équivalent au fait de doubler la taille de la clé (ce qui est une longueur siire actuellement). Il
existe deux versions de 3DES : la premiére utilise deux clés, la seconde trois (le dernier chiffrement
utilise une troisieme clé).

Il est robuste contre les attaques connues. Mais, il est tres lent que le DES car on triple les
opérations.

Modes de chiffrement symétrique Les modes sont des méthodes pour utiliser les chiffrements par
blocs. L’algorithme de chiffrement est combiné & une série d’opérations simples en vue d’améliorer sa

séeurité et/ou de 'adapter a des utilisations précises.
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Ly Ry

FIGURE 2.5 — Schéma Feistel

2.9 Schéma de Feistel

Feistel, ingénieur chez IBM a dirigé I’équipe qui a congut DES.

Le schéma qui porte son nom a été décrit en 1973. Voir la Figure 2.5

obtenir une bijection sur 2n bits a partir d’une fonction non-bijection sur n-bits.

Chiffrement : Ly = Ry, R1 = Lo @ f(Rp)

Déchiffrement : Ry = L1, Lo = R1 & f(Rp)

La fonction f du schéma de Feistel s’appelle fonction de confusion.

La plupart des algorithmes & clé secrete de la fin du XXe siecle sont basés sur le schémas de Feistel.
Par exemple : DES, Blowfish, Twofish, Camellia, SEED, RC5, OAEP, etc

Il faut que le message chiffré soit aussi aléatoire que possible.

Le schéma de Feistel permet de construire des bijections aléatoires.

Plusieurs attaques sont possibles sur le schéma de Feistel. Les deux principales sont : la cryptanalyse
linéaire et la cryptanalyse différentielle. Ces méthodes ont fait leur preuve sur DES et sur d’autres

algorithmes similaires.

2.10 Exercices

Exercice 1. Calculer S;(110101) ou S; est la i S-Box du DES et i= 5,8.

Exercice 2. Expliquer pourquoi dans le DES on a la propriété de complémentation : pour tout M et
toute clé k : DESg(M) = DES;(M)

Exercice 3. On considére un diagramme de Feistel & deux rondes sur des chaines de 8 bits avec deux
fonctions fi et fo.

1. On pose fi(a) :=a® 1011 et fo(a) := a & 0101 pour toute chaine a de 4 bits.

(a) Calculer I'image de la chaine 11010011 par ce diagramme.

(b) Déterminer une chaine de 8 bits dont I'image par le diagramme est elle-méme.

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi



CHAPITRE 2. DES (DATA ENCRYPTION STANDARD) 29

2. La propriété précédente, a savoir il existe une chaine dont I'image par le diagramme de Feis-
tel est elle-méme, est-elle vraie pour toutes les fonctions fi et fo 7 Justifier votre réponse par une

démonstration ou un contre-exemple.

Exercice 4. On utilise pour chiffrer ses données privées le cryptosysteme DES, paramétré par une
clé secréte k de 56 bits. Comme 56 bits est bien peu de nos jours, on envisage de rendre plus sir le
stockage de ses données en chiffrant une seconde fois toutes ses données, avec la clé DES k' = k + 1
(pour chaque donnée en clair m, la donnée chiffrée est donc ¢ = DESy11(DESk(m)), ou k désigne la
clé).

1. Est-ce une bonne idée ?

2. Discuter les avantages et/ou les inconvénients.

3. On pense a une autre amélioration possible. On va chiffrer une fois avec DES, et une fois avec
AES128. Comme AES128 a besoin de clés de 128 bits, on va paramétrer son chiffrement DES par sa
clé secrete k, et pour son chiffrement AES128 la méme clé secrete k, mais avec des zéros pour faire le
remplissage. Est-ce mieux?

4. Quelle erreur fondamentale commet-on, eu égard aux principes de Kerckhoffs 7
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Chapitre 3

IDEA

Sommaire

3.1 Introduction

IDEA (International Data Encryption Algorithm) est un systeme de chiffrement symmétrique, par
blocs de 64 bits avec une clé de 128 bits, qui tourne sur 8 tours et une transformation finale. IDEA
et basé sur la fusion et la confusion. Mis au point par Xuejia Lai and James L. Massey [I], 2] en
1992 et proposé pour remplacer DES. La vitesse de IDEA avoisine celle de DES. IDEA a couronné
deux versions : la premiére PES (Proposed Encryption Standard) de 1990 renforcée pour résister
a la cryptanalyse différentielle (1991) pour obtenir la deuxiéme version IPES (Improved Proposed
Encryption Standard) de 1991.

Pendant quelques années IDEA a servi de standard en remplacement a DES dans certaines appli-
cations. Il a été aussi utilisé par PGP (Pretty Goog Privacy), qui I’a rendu célebre, pour sécuriser les
courriers e-mails et par openSSL (Secure Socket Layer) pour sécuriser le trafic web.

Le méme algorithme est utilisé & la fois pour chiffrer et déchiffrer. IDEA est breveté dans plusieurs
pays, Il est commercialisé par la société suisse MediaCrypt. Mais libre d’utilisation a des fins non
commerciales par tout dans le monde. Les droits d’exploitation sont détenus par Ascom Systec AG.
WWW.ascom.com.

Contrairement au DES, IDEA n’utilise pas de S-Box et n’utilise pas le schéma de Feistel mais
une autre méthode permettant de produire des fonctions inversibles, propriété essentielle pour le
déchiffrement. Il répond aux exigences de diffusion et de confusion.

IDEA est un algorithme de chiffrement symétrique par blocs de 64 bits, se fait en 8 tours et une

transformation finale et utilisant 52 sous-clefs de la clef initiale de 128 bits.
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Le processus de dérivation de sous-clé en produit 52 de 96 bits chacune.

Il est facilement réalisable en matériel ou en logiciel. Les opérations utilisées dans IDEA sont des
opérations simples de trois groupes algébriques :

1. le ou exclusif (xor) noté @;

2. I’addition modulo 2% = 65536 notée H;

3. la multiplication modulo 2!6 + 1 = 65537, (qui est un nombre premier). notée ®. Pour cette
multiplication un bloc de 16 bits dont tous les bits sont & 0 est interprété plutot comme 216 et

non comme 0.

Ces opérations manipulent des sous-blocs de 16 bits.
- IDEA était considéré par les spécialistes comme 'un des meilleurs cryptosystéme a clé secrete,
car la longueur de sa clé est élevée (128 bits) et la vitesse de chiffrement et de déchiffrement peut-étre

élevée au moyen de circuits spéciaux.

3.2 Séquencement de la clé

IDEA utilise une clef de 128 bits qui sert pour créer 52 sous-clefs, 6 pour chacun des 8 tours et 4
pour la transformation finale.
La clé K = b1by - - - byog de 128 bits est divisée en 8 blocs de 16 bits :

bibg -+ b16 b7 -+ b3+~ bg1 -+~ bog bo7 - - - bi12 b11g - - - b1os
—_— N Y

KO KD KO K® K®

Ce sont les 8 premieres sous-clefs de IDEA : 6 pour le premier tour et les 2 qui restent sont les
premieres sous-clefs du 2e tour. La clé K est ensuite décalées circulairement vers la gauche de 25 bits,

puis divisée, en 8 sous-clefs :

bogbor -+ byy -+ bag -+ - bs7 bsg - - - bys bry - - - bsg
——— e e — N —

KéQ) KéQ) K;S) KéS)

les 4 premieres sont utilisées dans le 2e tour et les 4 qui restent dans le 3e tour.

La clé est décalée vers la gauche de 25 bits et ainsi de suite jusqu’a obtenir 52 clés. Ces clés forment
8 groupes de 6 sous-clés (un groupe par tour) : K@, Kéi), K?(’i), Ky), Kéi), Kéi), i=1,---,8

et un groupe de 4 clés pour la transformation finale : K fg), Kég), Kég), K AEQ).

Voir la Table des sous-clés de chiffrement.

3.3 Description de IDEA

Le texte clair a chiffrer est découpé en blocs de 64 bits. Chaque bloc est divisé en quatre sous-blocs
de 16 bits : X7, X5, X3, X4. Ce sont les entrées du premier tour de 'algorithme IDEA. L’algorithme
s’effectue en 8 tours. Voir I'algorithme [B.11
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tour | Sous clefs de chiffrement
1 kY kY kD kD kD gV
2 K® kP kP kP kP kP
3 k? kP kP kP kPP kP
4 k® gk ki k¥ kW KM
5 kK kY kP kP kP kP
6 K9 k¥ k9 k¥ K9 ki
7 k"7 k" kD kD KD KD
8 K® P kP kP Kk kP
finale | KV K K K
TABLE 3.1 — Sous clefs de chiffrement
1 1 1 1
KV — ¢ Ky @ K — g K
} o }
¢ l GF 9
1
K5( )_,? i
1
H — K
@ | -
b—<’ @
K —o K —m ) —s kY —o0
Y1 Yo Y3 Yy
X; : sous bloc de 16 bits de texte clair
Y; : sous bloc de 16 bits de texte chiffré
KZ»(]) : sous bloc de 16 bits de la clé
@ : ou exclusif bit a bit
B : addition modulo 2'6 d’entiers de 16 bits
® : multiplication modulo 2'¢ + 1 d’entiers de 16 bits
F1GURE 3.1 — Description de l'algorithme IDEA
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A chaque tour, les X; sont combinés par les opérations @, H, ® entre eux et avec les six mots de
16 bits de la clef.

A chaque tour la suite d’opérations est la suivante :

I = T
w N = O

Les deux blocs intérieurs X3 et X4 obtenus sont échangés, sauf lors du dernier tour..
Pour finir, apres le huitieme tour, on applique une étape supplémentaire :
Vi=X0K" h=XBK" V3=X8K", Y =X0K.

© ° N e o WD

Etapel = X1 © Kfi)
Etape2 = X, B K"
Etape3 = X3 @ K"
Etaped = X, @ K"

Etapeb = Etapel @ Etape3
Etape6 = Etape2 & Etape4
Etape7? = Etapeb © Kéi)
Etape8 = Etapeb H Etape7
Etape9 = Etape8 © Kéi)

. Etapel0 = Etape7 H Etape9

. Etapell = Etapel & Etape9 = X; du tour suivant
. Etapel2 = Etape3 & Etape9 = X3 du tour suivant
. Etapel3 = Etape2 & Etapel0 = X5 du tour suivant
14.

Etapeld = Etaped & Etapel0 = X, du tour suivant

Les 4 blocs Y7, Yo, Y3, Yy, forment alors le message chiffré.

3.4

Pour déchiffrer le texte, il faut d’abord inverser la derniere opération :
Vi=Y10K Yo=Yy — Ky, Vs =Ys— K3, , Vs =Y, 0 K; .

Déchiffrement

Les sous clefs de déchiffrement sont inverses par rapport a I’addition ou par rapport a la multiplica-

tion des sous clefs de chiffrement. (pour les besoins de IDEA, tous les sous blocs constitués uniquement

de zéros représentent 2! = —1 modulo 2'® + 1 pour la multiplication et I'inverse de la multiplication

de zéro est donc zéro). Le calcul de ces inverses prend du temps mais on le fait qu’une fois par clef de

(dé)chiffrement. Voir la Table des sous-clefs de déchiffrement.

On applique alors les opérations suivantes selon 8 tours, en utilisant les groupes de 6 clés en partant

de la derniere a la premiere :

1.

Etapel = Cy & C3 (Etapeb lors du chiffrement)

2. Etape2 = Cy @ Cy (Etape6 lors du chiffrement)
3.
4. Etaped = Etape2 + Etape3 (Etape8 lors du chiffrement)

Etape3 = Etapel ® K5 (EtapeT7 lors du chiffrement)
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tour Sous clefs de déchiffrement

1 K97 k9 _g® k7 k® kP
2 E® g g kP gD gD
3 S O <G s AN QI e )
4 O _g® gl kO kO kP
5 JAERA I (R ¢ S e v
6 FA AR ¢ R ¢ S e v s
7 JrER N XA ¢ G e v
8 P k@ kP kP kP kY
Finale | K07 k() —k{V M7

TABLE 3.2 — Sous clefs de déchiffrement

5. Etapeb = Etaped ® Kg (Etape9 lors du chiffrement)

6. Etape6 = Etape3 + Etapeb (Etapel0 lors du chiffrement)
7. Etape7 = C1 @ Etapeb (Etapel lors du chiffrement)

8. Etape8 = C3 @ Etapeb (Etape3 lors du chiffrement)

9. Etape9 = Cy @ Etape6 (Etape2 lors du chiffrement)
10. Etapel0 = Cy @ Etape6 (Etape4 lors du chiffrement)
11. Etapell = Etape7 © Kfl = (1 du tour suivant
12. Etapel2 = Etape8 — K3 = (5 du tour suivant
13. Etapel3 = Etape9 — Ks = C5 du tour suivant
14. Etapeld = Etapel0 © KZI = (Cy du tour suivant

Les 4 blocs C1, Cs, C3, Cy4, obtenus apres le dernier tour forment alors le message en clair.

3.5 Sécurité de IDEA

La sécurité de IDEA dépend de la confusion et de la diffusion. La confusion est réalisée par le
mixage des trois opérations incompatibles. En effet aucune paire des trois opérations ne satisfait ni la
loi de distribution

aB(boc)# (aBb) @ (aBe)

ni la loi d’associativité généralisée
aB(bdc)# (aBb)@c

Aussi, les trois opérations sont choisies de facon que le résultat d’une opération n’est jamais utilisé
comme entrée d’une opération de méme type. (i.e. un résultat de 'opération @ ne peut étre utilisé

dans une autre opération @.)
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La diffusion est réalisée par le fait que chaque sous-bloc résultant dépend de tous les sous blocs
d’entrée et que le nombre minimum d’opérations utilisé dans chaque structure d’addition multiple est
de quatre. De plus chaque entrée et sortie d’une telle structure est une transformation inversible.

IDEA a une clef de 128 bits. L’attaque exhaustive exige 2'?8 soit 103® tests. Si on a des processeurs
qui testent 10? clefs par seconde et en utilisant 10° ordinateurs munis de ces processeurs en paralélle il
faudrait 10'3 années, c’est beaucoup plus que I'age de 'univers. Il faudrait 10** ordinateurs de ce type
pour trouver la clef en 24 h. Mais il n’y a pas assez d’atome de silicium dans 'univers pour construire
toutes ces machines.

Mais alte a d’autres algorithme de cyptanalyse ou d’autres techniques.

Il existe une classe de clefs faibles, qu’un cryptanaliste peut identifier par une attaque a clair choisi.

En héxadécimal une classe de telles clefs est
0000 0000 O0X00 0000 0000 000X XXXX X000

X représente n’importe quelle valeur héxadécimale. Mais la probabilité d’engendrer une telle clef
aléatoirement est de 279, Tres faible.

Mise a part cette faiblesse de clef, jusqu’en 2002 aucune attaque plus rapide que I'attaque exhaustive
n’a été publiée.

En 1996 Bruce Schneier a pensé que "IDEA est le meilleur algorithme public de chiffrement par
bloc” et le plus sécurisé. Mais en 1999 il ne recommandait plus IDEA a cause de certains progres dans
sa cryptanalyse d’une par, de sa nature brevetée et de la disponibilité de nouveau algorithmes d’autre

part.
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Chapitre 4

AES : Advanced Encryption Standard

Sommaire

Version officiele de ’AES est disponible sur [1].

En 1997 un appel d’offre du NIST (National Institute of Standards and technology) est lancé pour
réaliser un cryptosystéme appelé AES (Advanced Encryption Standard) destiné a remplacer le DES.
En 1998, suite a une premiere sélection, 15 projets ont été retenus et apres une deuxieme sélection, ils

ne sont plus que cinq :
1. MARS (IBM)
2. RC6 (Laboratoires RSA)
3. Rijndael (J. Demen et V. Rijmen)
4. Serpent (E. Biham et al.)
5. Twofish (B. Schneier et al.)

En 2000 le projet Rijndael (prononcer Raindal ) est déclaré vainqueur par le NIST, il devient alors
I'AES, donc le successeur du DES. Rijndaelest congu par Joan Daemen, et Vincent Rijmen, deux

chercheurs Belges, docteurs de I'université de K. U. Leuven en 1995 et 1997 respectivement.
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Rijndael est un systeme de chiffrement symmétrique par blocs. Rijndael n’utilise pas le schéma de
Fiestel. La longueur de bloc a chiffrer est variable, elle peut étre de 128, 192 ou 256 bits. La clé est aussi
de longueur variable, 128, 192 ou 256 bits. Rijndael est réalisé en 10, 12 ou 14 tours (respectivement)
selon la longueur de la clé.

Par contre, le systéme de chiffrement standard AES retient uniquement la longueur de bloc qui est
fixée a 128 bits et utilise des longueurs de clé variables, 128, 192 ou 256 bits.

IL est facile d’'implémenter ’AES aussi bien sous forme logicielle que matérielle.

Trois criteres principaux ont été respectés dans sa conception : Résistance face a toutes les attaques
connues notamment les attaques différentielle et linéaire , rapidité et simplicité dans la conception.
L’AES est un standard, libre d’utilisation, non breveté.

Parmi les standards commerciaux utilisant PAES : les standards de sécurité de I'Internet IPsec,
TLS, Wi-Fi IEEE 802.11i, le protocole SSH, le téléphone par Internet Skype et d’autres. Actuellement
aucune attaque n’est connue hors 'attaque exhaustive.

En 2003, le NSA (National Security Agency) a autorisé I'utilisation de ’AES pour chiffrer les
documents classés niveau "SECRET” avec une clé de n’importe quelle longueur, et les documents
classés "TOP SECRET” avec une clé de longueur 192 ou 256 bits.

4.1 Outils mathématiques

La description de cet algorithme utilise le corps de Galois F9s o I’essentiel des calculs est effectué.
Rappelons que si p est un nombre premier et r un entier positif, alors il existe un corps fini d’ordre

p" donné par
Fyr = {ap +art + - +a,_1t" ‘/ag,a1, -+ ,a,_1 € Zp} = Z,[x]/(P(x))

ou P(x) € Zy|z] est un polynéme irréductible unitaire de degré r et t vérifie P(t) = 0.

L’AES utilise le corps de Galois Fys défini par le polynome
P(x) =28+ 2 + 23 + o+ 1 € Zy[x] (4.1)

La multiplication dans Fp- est la multiplication usuelle de polynémes modulo P(z).

4.1.1 Représentation polynomiale et hexadécimale des octets

Un octet B = brbgbsbabsbobiby, est identifié au polynome
671'7 + b6x6 + 651'5 + b4.%'4 + 631'3 + b2x2 4+ b1z + by € Fos = Zo [x]/(P(m)) (4.2)

L’octet B s’écrit aussi en format hexadécimale en écrivant la valeur hexadécimale des 4 premiers
bits suivies de celles des 4 derniers bits. Inversement, le passage de 1’écriture hexadécimale en binaire
consiste a écrire chaque chiffre hexadécimal sur 4 bits.

Les opérations de L’AES sont effectuées dans le corps Fys ci-dessus dont on identifie ses polynémes

aux nombres hexadécimaux qui sont, & leur tour, convertis en nombres binaires.
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Par exemple : 0xC3= 11000011 représente le polynéome x7 4284241 et 0xEO= 11100000 représente
le polynome z® + 27 4+ 2% et on a 0xC3 & 0xE0=23=100011.

La somme de polyndmes revient a xorer les coefficients de méme monome.

Important : dans la suite les nombres hexadécimaux, les octets doivent étre percus comme des
polynomes.

Par exemple le polynéme P(z) ci-dessus s’écrit en hexadécimal 0x11B.

L’ensemble des 256 octets muni de 'opération @ et de la multiplication modulo P(z) est un corps
isomorphe a Fos.

Etapes de I'algorithme : la figure montre les différentes étapes de ’algorithme AES. 11 est formé d’un
tour initial, puis de tours standards et d’un tour final. Quatre opérations différentes sont nécessaires
pour réaliser ces rondes et la diversification de la clef.

Représentation polynomiale des mots (1 mot=4 octets) Auparavant pour représenter des octets
nous avons utilisé les polynomes de Zo[z]. Maintenant pour représenter un mot (4 octets ou 32 bits)
nous utilisons un polynéme de degré au plus 3 & coefficients dans I'anneau Fys = Zo[z]/(z* + 1).
L’addition est usuelle.

La multiplication est (modulaire) effectuée modulo z* + 1.

Le polynéme z* 4+ 1 n’est pas irréductible dans Fgs[z], et la multiplication par a(z) n’est pas

nécessairement inversible. Mais le polynéme a(z) est inversible.

4.2 Présentation du bloc a chiffrer et de la clé

L’AES chiffre par bloc de 128 bits. Soit byb1bs - - - a1o7 un tel bloc. On le découpe en octets et on le

note ByB1Bs - - By On appelle état, la présentation d’un tel bloc sous forme de matrice a 4 lignes.

By By Bs B
By Bs By Bis
By; Bs Bio Bia
Bs B; By Bis

Soit koky - - - k, une clé de longueur 128, 192 ou 256 bits. On la découpe en octets et on la note
KoK1Ky--- Ky ou N = 15,23 ou 31 la présentation d’un tel bloc sous forme d’une matrice toujours
de 4 lignes et de N, = (longueurdublocenbits)/32 = 4,6 ou 8 colonnes (respectivement). Par exemple,

une clé de 128 bits est représentée par la matrice suivante ou N, = 4

Ky Ky Kg Ko
Ky Ks Ky Ki3
Ky K¢ Kio K
K3 K7 Kiui Kis
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nombre de colonne nombre de tour
clé de 128 4 10
clé de 192 6 12
clé de 256 8 14

TABLE 4.1 — Nombre de tour de ’AES pour chaque longueur de clé

une clé de 192 bits est représentée par la matrice suivante ou N, = 6

Ky Ky Kg Ko Kig Ko
Ky Ks K9 Ki3 Ki7 Ko
Ky, Kg Kijo Kig Kig Koo
K3 K7 Kn K53 K9 Ko

Si on note par NN, le nombre de tour a effectuer par L’AES pour chiffrer, on a les possibilités
suivantes :

Exemple

bloc F6 12 A8 98 05 28 20 7A EO0O 5A 24 F6 83 8D 35 32

clef 21 A0 22 07 EO 08 05 F3 20 C2 01 Bl 04 D3 A8 19

F6 05 EO 88 21 EO 20 04

12 28 5A 8D A0 08 (C3 D3
bloc= clef=

A8 20 24 35 22 05 01 A8

98 TA F6 32 0vr F3 Bl 19

OnaNk:Nb:4

4.3 Opération de I’algorithme AES

Le systeme de chiffrement AES opére sur les états (matrice a 4 lignes et N. = longueur(bloc)/32
colonnes). Le chiffrement consiste en une addition initiale de clé appelé AddRoundKey suivie de N, — 1

tours et chaque tour est formé de 4 étapes :
1. SubBytes : substitution d’octets par d’autres choisis dans une boite S-Box ;

2. ShiftRows : transposition, chaque terme de la matrice est décalé cycliquement a gauche d’un

certain nombres de colonnes ;
3. MixColomns : produit matriciel sur chaque colonne (pris comme vecteur) de la matrice ;

4. AddRoundKey : combine par addition chaque octet avec l'octet correspondant dans une clé de

ronde obtenue par diversification de la clé de chiffrement.

Enfin, une ronde finale nommée FinalRound est appliquée (c’est une ronde sans MixColomns )

4.3.1 L’opération AddRoundKey

C’est une simple opération XOR terme & terme dans Fos entre la matrice état (state) et la clef de

la ronde.
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ago | apr | Ge2| Go3 koo kot | ko2 | ko3

atp | ar1| ai2{ @13 ko ki1 | k2| ki3

agy—{as1 - ap koo kot /- kap
ago—|-G31-| 32 \&&3 k30 %31/ ks 33

~_

boo | bor | bo2 | bo3

bio | bt | bz | b3

bao | b21 ./ bag

bzo{ b3t | b3z | b33

FIGURE 4.1 — L’opération AddRoundKey

4.3.2 L’opération SubBytes

Dans cette opération chaque octet des sous-blocs est substitué selon la table S-Box. Voir Figure

Cette opération augmente la non-linéarité des données. Elle agit sur chaque état.

Elle est similaire aux S — box utilisées dans I'algorithme DES. AES a un seul S — boz qui est donné.

Il est connu pour résister a la cryptanalyse linéaire et différentielle connues.

Contairement aux S-Box de DES, la conception de S-box de ’AES est publique : celle-ci est inver-
sible, et construite par la composition de deux transformations :
1) Iinverse multilicatif de chaque élément est calculé dans Fos ('00” est son propre inverse par conven-
tion) ; voir la table des inverses L3l L’inverse de l'octet xy est la valeur du tableau se trouvant a
I'intersection de la ligne x et de la colonne y.

2) puis on applique la transformation affine suivante sur chaque octet résultant de 'opération précédente

S-Box est la composée S = f oI des applications I : Fos — Fos 1(0) = 0 et I(z) = 2~ pour
x # 0 et la fonction affine : f : (Fys)® — (Fys)® f(z) = Az + B donnée matricielement par
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By Bs | By | Bis By Bs | By | Bis
By B Bro | Bua B
Bz By T~ Bis Br
S
By Bs | B2 | Bis Bis | Bs | Bs| B2
FIGURE 4.2 — Fonction Sub-Bytes
(1000111 1] [a]l| [1]
1 1.0 0 01 11 T 1
1 1100 0 1 1 x9 0
1 1110 0 0 1 T3 0
T, T1,...,T7) = + mod 2
f(@o, 21 D=1l 1111000 4 0
01 1 1 1100 Ts5 1
00111110 Tg 1
0001111 1/|]|a 0

Si x et y représentent respectivement le premier et le deuxieme unité d’un octet hexadécimal d’un
état alors la transformée par SubBytes du nombre xy est le nombre se trouvant a Iintersection de la
ligne x et de la colonne y de la table S-Box.

Par exemple pour 'd9’ : x =d et y =9.

Exemple d’action de SubBytes Soit I’état

F6 05 EO 88 42 6B FE1 (4

12 28 5A 8D Cc9 34 BE 5D
s = alors S — Bozx(s) =

A8 20 24 35 C2 BT 36 96

98 TA F6 32 46 DA 42 23

4.3.3 Opération ShiftRows

Le role de cette opération est d’augmenter la diffusion. Sous l'action de cette opération chaque
ligne I;, ¢ = 0,---,3 d’un état, est circulairement déplacée vers la gauche de ¢; cases ¢ = 0,---,3

dépendant de la longueur N, du bloc d’entrée et donné par :
Décalage des lignes dans ShiftRows en fonction de IV

Cette opération augmente la diffusion des données dans le ronde en séparant les octets a 'origine

consécutif.

Exemple d’action de ShiftRows
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| Texte clair |

|
Ronde Key N;. | AddRoundKey |

l

1+ 1

| SubBytes |
|

| ShiftRows |
| i<i+1

| MixColumn |

N, — 1 fois

Ronde Key ¢

| AddRoundKey |
| SubBytes |

l

| ShiftRows |

Ronde Key 0

|
—>| AddRoundKey |
|

| Texte chiffr |

FI1GURE 4.3 — L’algorithme AES

4
pas de décalage ¢y =0

3
décalage de ¢y =1

By | Bs | Bro| Bia

2 2

décalage co = 2
Bz By Bir | Bis 80

1 1
décalage c3 = 3

By Bg | B2 | Bis 8% Bis | Ba | Bs | B2

0 0

0 1 2 3 4 8 9 10 11 12

Be | Bio | Bua| B2

B | Bis| Bs| Bz

FIGURE 4.4 — ShiftRows dans le cas Nb=4 et (¢, c1,c2,c3) = (0,1,2,3)
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hex y
0 1 2 3 4 5 6 7 8 9 a b c d e f
0|63 | T7c| 77 |7 | f2 |6b| 6f [ cH |30 01| 67| 2b | fe d7 | ab | 76
1 |ca |8 | c9|7d| fa |59 |47 | f0 |ad | d4d | a2 | af | O9c | a4 | 72 | cO
2 | b7 | fd | 93|26 | 36 | 3f | f7 | cc | 34 | ab | eb f1 71 | d8 | 31 15
3104 | c7 |23 |c3| 18|96 |05 |9a |07 |12 |80 |e2 | eb | 27 | b2 | 75
4 109 |8 | 2c|la|1b | 6e | ba | a0 | 52 | 3b | d6 | b3 | 29 | e3 2f | 84
5|53 |dl |00 |ed| 20| fc | bl | 5b | 6a | cb | be| 39 | 4a | 4c | 58 | cf
6 | dO | ef | aa | fb | 43 | 4d | 33 | 85 | 45 f9 | 02 7t | 50 | 3c 9f | a8
x| 7|51 a3 |40 | 8 | 92| 9d| 38| 5 | bc | b6 | da | 21 | 10 ff 3 d2
8| cd | Oc| 13| e | Bf | 97 | 44 | 17 | c4 | a7 | Te | 3d | 64 | 5d | 19 | 73
9 | 60 | 81 4f | dc | 22 | 2a | 90 | 88 | 46 | ee | b8 | 14 | de | 5e | Ob | db
a|e | 32]|3a|0a|49 |06 | 24 |5 |c2|d3|ac| 62|91 | 95 | ed |79
b |e7 | c8 |37 |6d|8 |d5 | 4e | a9 | 6¢c | 56 | f4 | ea | 65 | 7Ta | ae | 08
c|ba| 78|25 |2 | 1c|ab |bd | c6| e8| dd | 74| 1f | 4b | bd | 8b | 8a
d| 70 | 3 | b5| 66|48 |03 | f6 | Oe | 61| 35|57 | b9 |8 | cl | 1d | 9
e | el f8 | 98 | 11 | 69 | d9 | 8e | 94 | 9b | 1le | 87 | €9 | ce | 55 | 28 df
f |8 [al | 8 | 0d | bf | e6 | 42 | 68 | 41 | 99 | 2d | Of | bO | 54 | bb | 16
TABLE 4.2 — S-Box de 'algorithme AES
hex y
0 1 2 3 4 5 6 7 8 9 a y c d e f
05209 |6a|ds |30 |36 | ab| 38| bf | 40 | a3 | 9¢ | 81 f3 | d7 | fb
1| 7c|e3 |39 |8 |9 | 2f | ff | 8 | 34 | 8 | 43 | 44 | c4 | de | €9 | cb
2|54 |7 | 94|32 | a6 | c2|23|3d]|e | 4c| 95 |0b |42 | fa | c3 | 4de
3|08 | 2 [al |66 |28 | d9 |24 | b2 |76 |5b| a2 |49 [6d |8 |dl | 25
4 | 72 8 f6 | 64 | 86 | 68 | 98 | 16 | d4 | a4 | 5c | cc | bd | 65 | b6 | 92
5| 6c | 70 | 48 | 50 | fd | ed | b9 | da | 5e | 15 | 46 | 57 | a7 | &1 | 9d | 84
6|90 | d8 | ab | 00 | 8& | bc | d3 | Oa | {7 ed | 58 | 05 | b8 | b3 | 45 | 06
x| 7]1d0O| 2c | le| 8 | ca | 3f | Of | 02 | ¢c1 | af | bd | 03 | 01 | 13 | 8a | 6b
8 | 3a | 91 | 11 | 41 | 4f | 67 | dc | ea | 97 | f2 cf | ce | f0 | b4 | e6 | 73
99 |ac | 74|22 | e7T | ad | 35 |8 | e2 | f9 | 37 | e8 | 1c | 75 | df | 6e
a | 47 | f1 la | 71 | 1d | 29 | ¢5 | 8 | 6f | b7 | 62 | Oe | aa | 18 | be | 1b
b | fc |5 | 3 |4b | c6 | d2 | 79|20 | 9a | db | c0 | fe | 78 | c¢d | ba | f4
c| 1f | dd | a8 | 33 | 8 | 07 | ¢7 | 31 | bl | 12 | 10 | 59 | 27 | 80 | ec | 5f
d |60 |51 | 7| a9 |19 | bs|4a|0d|2d|e>b | 7a| 9 |93 ]|cY9 | 9 | ef
e| a0 | e | 3b|4d | ae | 2a | f5 | bO | ¢c8 | eb | bb | 3c | 8 | 53 | 99 | 61
f |17 | 2b | 04 | Te | ba | 77 | d6 | 26 | el | 69 | 14 | 63 | 55 | 21 | Oc | 7d
TABLE 4.3 — S-Box inverse de l'algorithme AES
Ny |co|cr]ca]ces
0 1 3
1
1 4
TABLE 4.4 — Nombre de décalages en fonction de IV,
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F6 05 EO0 88 F6 05 EO 88

12 28 5A 8D , 28 HA 8D 12
s = alors s’=

A8 20 24 35 24 35 A8 20

9 T7TA F6 32 32 98 7A F6

4.3.4 Opération MixColumns

La combinaison de ShiftRows et MixColumns fait qu’apres seulement 3 tours chaque octet dépend
de tous les 16 octets du texte clair.

C’est une opération linéaire sur chaque colonne d’un état qui est considérée comme un polynoémes a
coefficients dans Fos . Chaque colonne, vue comme polyndéme, est multipliée (multilication modulaire)
par le polynéme

a(z) = 032 + 01y2? + 01z + 02 mod (z* +1)

Noter que 7 mod (z* + 1) = 27 mod 4

La multiplication modulo 2 4+ 1 est notée ®, elle n’est pas nécessairement inversible. Mais le
polynéme a(x) est choisi car il est inversible. En général a(z) = azz® + asz? + a1z + ag et b(z) =
b33 + box? + bix + by .

d(z) = a(z) @ b(z)

d(z) = d3x® + dox® + dyx + dy

do = apbo ® azby ® a2bs & a1bs
d1 = a1by @ apby ® azba ® azbs
doy = asby @ a1b1 @ apbs @ azbsz
d3 = aszby @ azb1 @ arbs @ apbs

La multiplication par un polynoéme fixe a(z) peut s’écrire matriciellement

do apg az az ai bo
dy ap ap az as by
dg B as a1 ap as bQ
d3 az az a1 ag bg

Cette opération peut s’écrire matriciellement, si b = b3bab1by est une colonne d’un état alors

(o] [02 03 01 o1 ][ By |
Ci | |01 02 03 01 B
C, | |01 01 02 03 Bs
C, 03 01 01 02 Bs
(o] [02 03 01 o1 ] By ]
Cs | |01 02 03 o1 Bs
Cs | | 01 o1 02 03 Bg
| ¢ | |03 01 01 02| Br |

ete
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E C
=0 12 12
E C
D1 13 15
BZ (O 1Pl4 C 14
N
®a(z)
B yin]
23 1 215 1o

FIGURE 4.5 — Transformation MixColumn

L’inverse de a(x) est le polynéme
a Y(z) = 0Bya® + 0Dyx? + 0952 4+ 0Ey

On a
a Y (z)a(z) =1 mod z* + 1

Exemple : 7

4.4 Description de PAES

4.5 Dérivation de clés de tour

Le nombre de sous clé est égale au nombre de tours plus un. Une sous clé utilisé a la fin.

Toutes les sous clé sont de 128 bits. Quelque soit la longueur de la clé.

Pour une clé de 128 bits il y a 10 tours et 11 clés de tour.

Pour une clé de 192 bits il y a 12 tours et 13 clés de tour.

Pour une clé de 256 bits il y a 14 tours et 15 clés de tour.

A partir d’'une clé K (de longueur 128, 192 ou 256) on génére N.(N, + 1) mots.

L’opération KeyExpansion permet de transformer la clé de chiffrement K (de longueur 4Ny, octets)
en une clé étendue W de 4N (N, + 1) octets. Ainsi on obtient N, + 1 clefs de tour et chaque tour
utilise une clé de 4N, octets une et une seule fois.

Voir Figure

K et W sont des successions de colonnes, chacune de 4 octets. On note par k; (resp. w;) la (i4+1)eme
colonne de K (resp. W).

Les sous clés sont calculées récursivement. Elles sont rassemblé dans un tableau w formé de mots
(Imot=32 bits).

Production de sous clés d’une clé 128 Soit Ky, K1, ..., K15 les octets formant une clé de 128 bits.

Les 11 sous clés sont stockées dans un tableau W de 44 octets. Chaque W i] est un mot c’est a

dire de longueur 32 bits ou 4 octets.

Ko =WOWLW2IW[3] = KoK - - - K15
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K, K, K, K,JK, K, K, K, |K, K, K, K, K, KKK,

dé du tour 0 [

clé du tour 1 [

cé du tour 9 [

clé du tour 10

32 2 32 32
r v v v
wio] wip | owezr | owis |
r
Sran iy
Y
k)
S Y
A
1/ { _ _ ‘
D fonction g du tour i
N
Y Y v
wiar | owisp | owier | owi |
W | { |
' ' ' 1
wisel | owpzr | wpsr | wisey |
r
Sras il
v
AR
ko E
)
A\ 1
WA
AV
] Y v v
Wi40] wiar) | owizp | wpz |

FIGURE 4.6 — Dérivation des clés de tours d’une clé de 128 bits

n’est rien d’autre que la clé initiale de 128 bits Les autres éléments du tableau W sont calculés comme

il suit

W4i) = W[4(i — 1)] + g(W[4i — 1]) pour i = 1,...,10

W4i+j] = W[di +j — 1]+ W[4(i — 1) + 4], pouri =1,...,10etj = 1,2,3.

La fonction g est non linéaire : g : F§ x F§ x F§ x F§ — F§ x F§ x F§ x F§

RO[1]

RC[2] = x!

RO[3)

T
X

2% = (00000001)5,
(00000010)2,
(00000100)2,

RC[10] = 2% = (00110110)3.
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La fonction ¢() ajoute de la non-linéarité a la création des sous clés et augmente la sécurité de ’'AES.
La fonction g est une composition d’'une permutation des octets suivie de S-Box appliqué a chaque

octet en plus de RC[i] xoré avec le premier octet.

Exemple :
koo ko1 ko2 kogs
K- k1o ki1 k2 ki3
koo ko1 koo kog
kso ks1i ksa2 ksgs
opérations :

S1(w;—1) est une permutation circulaire de w;_1 définie par Si([ag, a1, az,as]) = [a1, a2, a3, ag] ou
[ag, a1, a2, as] est un mot de 4 octets.

SubWord est une opération qui agit sur des mots de 4 octets et applique S-Box a chaque octet.

La table de constante de rondes Rcon[i] est indépendante de Nj. Rcon|i] est définie récurssivement
par Rcon(i) = [z~ mod g(x),00,00,00] ot z°~! est la puissance de = dans Fos.

Les N, premieres colonnes de K sont recopiés dans les N premieres colonnes de W sans modifi-
cation. C’est a dire w; = k; pour ¢ =0,--- , N, — 1.

Pour Ny <6 on a:

we = ) WimNk @ SubWord(Sy(w;—1)) & rcon(xg) if i mod N =0
’ W;— Nk D wi—1 if i mod N #0

Pour N, > 6 on a :

wi— N, © SubWord(S1(wi-1)) @ reon(g7) if @ mod N =0

w; = wi—n, b SubWord(w;_1) if i mod Ny =4
Wi—N, D wi—1 sinon
Clé initiale K = Ky K;j Ky
wop w1 w2 w3 wg W5 We Wy - W40 W41 W42 W43

A partir de la matrice W on peut extraire facilement la RoundKeys. Les N} premieéres colonnes
de W forment la clé pour la premiere ronde, Les IV, colonnes suivantes de W forment la clé pour la
deuxime ronde, etc

N mots : longueur de la clé N, mots : nombre des rondes Ny(NV,. + 1) mots : taille de la clé étendue

Constants: int Nb = 4;
Inputs : int Nk = 4, 6, or 8; // the number of words in the key
array key of 4xNk bytes or Nk words // input key
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&, ki K KK, K: K K|, Ky Kio KoK Kis K Kl K Kis Koo Kol Ky Ky K Koo
i i 12 32 i 32
[ wjo] [ wi1] | wy2J | W3] ] Wi4] | Wis5] |
B-{e]
ANV L
Jan
1/
ol I
N
.
1
P
.8 fonction g tu tour i
W sseaseieas i
[ wi6] [ wi7] [ W[s] ] wy9] ] W[ 10] | W11} ]

| | l | | l

1 ! 1 ! ' '

U wzr [ owian ] ws | owis | wraer | wen |

Sran il
Fan)
1/
N
1/
Fal
J
W[48] W[49] wiso] | wisi |

FIGURE 4.7 — Dérivation des clés de tours d’une clé de 192 bits

Ni | Ny | Np(N +1)
10 44
12 52
14 60

TABLE 4.5 — Nombres de sous-clés
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K, K, K, K [K, K K, KK K KoK KK KKK K KKK Ky Ko KK Ko Koy KK, Ko K K

32 2 2 a2 n P32 12 o2

| wiay | Wi} | Wwi2j l Wi3j l Wid] ] Wisj l Wiaj | WI71 ]

B}
s

8
L/
Jan
N
fany
A\
t-Ln D
A
L
D
A
L/
'
[ owsr ] owa [ owpor | owp [ owpzr ] owm [ owie | owus |

. . . . . . .

1 ' ! i 1 1 ' '

[ wrasr | owieer | owsop | owesn | owsz | owesy | owisa | wiss |

RCli] |

—(

]

Seas il : ‘ ‘
A fonction g du tour i ~ fonction h

N e et ST : (mmmmm—— S
s | '
w1/ | :
= : !
\J/ ! :
[ wssr [ wism [ wissy | wiser ] : |

FIGURE 4.8 — Dérivation des clés de tours d’une clé de 256 bits
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K[) Kl K2 Kg K4 K5 Kﬁ K7 KS

-

K; = K;,_n, ® K; pour i mod N =0

FIGURE 4.9 — Génération des sous clés pour ¢ mod Ny # 0

K() K1 K2 K3 K4 K5 K6 K7 KS

fgla—[

K; = K;_n, ® f(K;) pour i mod Nj, =0

u f(K;) = SubWordoo(K;) @ Rcon(i/N,
FIGUCI)IyEfél(.lf)> — Génération deé S(Z))LIS clés p(()u/r zkznod N, =0

Output : array w of Nb*(Nr+1) words or 4*Nb*(Nr+1) bytes // expanded key
Algorithm:
void KeyExpansion(byte[] key, word[] w, int Nw) {
int Nr = Nk + 6;
w = new byte[4*Nb*(Nr+1)];
int temp;
int i = 0;
while ( i < Nk) {
wli] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]);
i++;
}
i = Nk;
while(i < Nb*(Nr+1)) {
temp = w[i-1];
if (i % Nk == 0)
temp = SubWord(RotWord(temp)) ~ Rconl[i/Nk];
else if (Nk > 6 && (i%Nk) == 4)
temp = SubWord(temp) ;
wlil = w[i-Nk] " temp;
i++;

}
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i 0 1 2 3 4 5 6 v 8 9 10 11 12 13 14
x¢ 01 02 04 08 10 20 40 8 1b 36 6c d8 ab 4d 9a

TABLE 4.6 — puissances de x = 0x02

4.6 Evaluation de I’ AES

S-Box n’a ni point fixe ni point opposé ni point fixe inverse.

MixColomn combiné avec ShiftRows permet apres plusieurs ronde que chaque bit de sortie dépende
de tous les bits en entrée.

La fonction z — 2~ ! est la meilleure connue contre les attaques linéaire et différentielle.

On a 3.4 x 1038 clés de 128-bit, 6.2 x 10°7 clés de 192-bit, et 1.1 x 1077 clés de 256-bit possibles

Pour DES 7.2210'6 clés différentes possibles.

Si une machine pourrait casser une clé DES en une seconde (c-a-d calcule 2%° clés par seconde),
alors il faudrait 149 mille milliards d’années pour cracker une clé AES. L’age de I'univers est de 20

milliards d’années au maximum.

4.7 Exercices

Exercice 1. Le corps Fos étant défini par le polynome irréductible P(x) = 28 + 2+ 2+ + 1

Calculer :
1. 094+A0, 45+25, E1+C1

2. 03x76, 02x25, 33x12
3 x4+l
4

© 2T +ab a3l
Exercice 2. Soit b= byz” + ... + bix + by. Calculer dans Fys les produits 01xb, 02xb, 03xb.
Exercice 3. Trouver dans Fys les inverses de 75, 1A, C1, 10 et vérifier.
Exercice 4. Soit S 'opération S-Box de ’AES. Utiliser sa table pour calculer S(10), S(45), S(1C).

Exercice 5. Soit S~! I'opération inverse de S-Box de I’AES. Utiliser sa table pour calculer S~1(1E),
S=1(C5), S71(20).

Exercice 6. Ecrire en binaire les éléments de Fys suivants : RC[8] = 27, RC[9] = 28, RC[10] = 7.
Exercice 7. Calculer S(88), S(54) ou S est la S-Box de ’AES.

Exercice 8. Calculer le résultat du premier tour de ’'AES au message M=MASTERCRYPTOSINF
et la clé k=MASTERCRYPTOSINF.

Exercice 9. Montrer que I'inverse du polynéme a(z) = 035 X3+ 015 X2+ 015X +02y mod (X*+1)
considéré comme un polynome & coefficients dans Fys est b(z) = 0By X3+ 0Dy X%+ 095X +0Ey
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Exercice 10. Dans le corps Fos on pose RC[1] = 1 et pour j > 2, RC[j] = 2RC|[j — 1]. Calculer
RC[j] pour j =1,2,--- ,12.

Exercice 11. Soit la clé K=11 00 00 00 11 00 00 00 11 00 00 00 11 00 00 00 qu’on veut utiliser pour
chiffrer des blocs de taille 128 bits avec ’AES. Calculer k; pour i =0,1,--- ,7

Exercice 12. On considere 'AES-128 et la clé

2c 7f 16 17 28 ae d2 a6 ab £f7 15 88 09 cf 4f 3c

Calculer w;, i =0,---,7.

Utilisez cette clé pour donner le résultat de la premiere ronde , du chiffrement de
32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34

On donne le résultat sous forme matricielle.

Exercice 13. On rappelle le polynéme irréductible P(z) = 28 + 2* + 2% + 2 + 1 sur Fy utilisé pour
AES. Quel est I'inverse de 27 mod P(x)? Calculer 2*? mod P(z) .

Exercice 14. En utilisant la tables des inverse dans le corps Fys quel est I'inverse de 0x83 7 Vérifier.
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Proof by poem :
The RSA Encryption Algorithm

Take two large prime numbers, q and p.
Find the product n, and the totient ¢.
If e and ¢ have GCD one

and is e’s inverse, then you’are done!
For sending m raised to the e

reduced mod n gives secre-c.

Daniel G. TREAT, National Security Agency
Mathematics Magazine, Vol 75 N 4, October 2002.

RSA est un crypto-systéme a clef publique, inventé en 1978 par R. Rivest, A. Shamir et L. Adleman
(dont les initiales forment RSA) du MIT. Mais leur objectif initial était d’établir que I'idée d’un crypto-
systeme a clef publique que W. Diffie et M. Hellman venaient d’inventer en 1976 était une impossibilité
logique.

RSA est basé sur la diffuclté de factoriser un nombre qui est le produit de deux grands nombres

premiers. RSA est aussi utilisé pour les signatures numériques.

5.1 Description de RSA

5.1.1 Outils mathématiques
5.1.2 Indicatrice d’Euler

L’indicatrice d’Euler est une fonction ¢ : N* «+— N* définie par ¢p(n) = card{l < m <
n / pged(m,n) = 1}.

Exemples : ¢(4) = card({1,3}) = 2, ¢(8) = card({1,3,5,7}) =4, ¢(1) = card({1}) =1, ¢(9) =
card({1,2,4,5,7,8}) =6,

Si p est un nombre premier alors ¢(p) = card({1,2,...,p—1}) =p—1,

Soit n € N*, alors ¢(n) est égal : — au nombre d’éléments inversibles de 'anneau Z/nZ ;
— au nombre de générateurs d’'un groupe cyclique d’ordre n;

La fonction ¢(n) est multiplicative, ¢’est-a-dire que si m,n € N* premiers entre eux, alors ¢(m.n) =
$(m)o(n).

Le calcul de l'indicateur d’Euler est donc important. Voici quelques propriétés permettant de le

calculer :
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Si p est premier et o > 1 alors

pp)=p—1 (5.1)
p(p®) =p* —p*! (5.2)
w(nm) = @(n)p(m) si n,m € N et pged(n,m) =1 (5.3)

En particulier, les propriétés précédentes permettent de calculer 'indicateur d’Euler ¢(n) connais-

sant la décomposition en facteurs premiers de n. Ainsi on a

o). i) = <p‘f‘1—p‘f‘1‘1) X oo (p2r —por1) :n<1——> <1——>.

On a aussi les propriétés suivantes :

n=>_¢(d)

djn
A =11(15)

avec p premier.

5.1.3 Description de RSA

Alice, Destinataire, :
- choisit deux grands nombres premiers p et q.E| et calcule n = pq .
- choisit un nombre d (grand, a l’aide de 'algorithme d’Euclide) et premier avec (p—1)(¢g—1) =
©(n) (fonction d’Euler).
- calcule e inverse de de d mod ¢(n) (a l'aide de l'algorithme d’Euclide).
- garde soigneusement secrets p, q et d
- envoie publiquement & I’émetteur (e,n), c’est la clef publique.
Bob, émetteur :
- Transforme le message M a émettre en un nombre de Z,, (Il découpe éventuellement le
texte en bloc)
- crypte par la relation C = M€ mod n.
- envoie le message au destinataire.

Destinataire : déchiffre le message C' par
C?modn=M

Exemple 5.1.1 Prenons 2 nombres premiers au hasard : p =29, ¢ = 37. On calcul n = pq = 29%37 =
1073.

On choisit e au hasard tel pged(e, (p—1)(¢—1)) = 1. (p-1)(¢-1) = (29-1)(37-1) = 1008. On prend
e = 71. On choisit d tel que 71*d mod 1008 = 1 On trouve d = 1079

1. plus de 100 chiffres chacun & générer par les algorithmes probabilistes
2. par exemple espace = 00, A=01, B=02 etc
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On a maintenant les clés :
- La clé publique est (e,n) = (71,1073) (=clé de chiffrement)
- La clé privée est (d,n) = (1079,1073) (=clé de déchiffrement)
On va chiffrer le message "HELLO’. On va prendre le code ASCII de chaque caractére et on les
met bout a bout : m = 7269767679.
Ensuite, on découpe le message en blocs qui comportent moins de chiffres que n. On va donc
découper notre message en blocs de 8 chiffres : 726 976 1767 900 (quitte a compléter par des zéros)
Ensuite on encrypte chacun de ces blocs :
72671 mod 1073 = 436
97671 mod 1073 = 822
76771 mod 1073 = 825
90071 mod 1073 = 552

Le message encrypté est 436 822 825 552. On peut le décrypter avec d :
4361079 mod 1073 = 726

8221079 mod 1073 = 976

8251079 mod 1073 = 767

5521079 mod 1073 = 900

C’est a dire la suite de chiffre T26976767900. On retrouve notre message en clair 72 69 76 76 79 :
"HELLO’.

5.2 Démonstrations mathématiques

Dans cette section, on montre 7?7, comment inverser mod ¢(n), calculer de grandes puissances

modulaire, générer de grands nombres.

5.2.1 Démonstration

On démontre que C? = (M€)¢ = M mod n. On distingue deux cas :

Si M est premier avec n :

On a (M° mod n)? mod n = M% mod n or de = 1 mod ¢(n) cad de = 1 + ko(n) ol k est un
entier.

Or on sait que si n est un entier et a un entier premier avec n. alors a?™ =1 mod n.

Puisque M est premier avec n on a M#™ =1 mod n d’on
C? = M = MM = 1. M mod n = M mod n.

Bi M est non premier avec n = pq :
Dans ce cas M est multiple de p ou de g. Supposons alors que M = p®m ou m € N et « est le plus
grand entier vérifiant cette relation.

m n’est multiple ni de p ni de ¢ d’ot1 m est premier avec n. D’ou
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M — (p“m)de = po‘de.mde mod n = padem mod n

ade

Or p®@ = p® mod p et p® = p® mod ¢ car p?@ =p?~' =1 mod gor de =1+ k@(n) on obtient

de _

P pith—1(a—1) — 4 1k(P—1) = p mod ¢ d’otr en élevant & la puissance p : p@¥ = p® mod g,

La différence p®@ — p est multiple de ¢ et de p donc multiple de pg d’ott d’aprés le lemme de

ade

Gauss p**¢ = p® mod n et donc

C? = M% = p*m mod n = p*m mod n = M mod n

5.2.2 Inversion modulo (p —1)(¢ — 1)

On sait que a est inversible dans anneau Z/nZ si et seulement si a est premier avec n.

Si a et n sont premiers entre eux alors il existe deux entiers u et v tels que ua + vn = 1. D’ou en
modulo n on conclut que : ua = 1 mod n.

On utilise I'algorithme d’Euclide étendu pour calculer .

Inversion modulo (p — 1)(¢ — 1) = p(n)

Il est facile de trouver un nombre d premier avec p(n) en le choisissant au hasard et vérifiant a
I’aide de l’algorithme d’Euclide.

Puis on doit chercher I'inverse e de d mod ¢(n) c’est a dire de = 1 mod ¢(n) ou de = 1 + kp(n)
ou k € N. C’est rien d’autre que la relation de Bezout. L’algorithme d’Euclide

o(n) =qd+nr
d = qor1 + 12

Tn—2 = qnTn—1 +7Tn
donne 7, = 1 puisque d et ¢(n) sont premiers entre eux. En partant de la derniére équation
l=7rp2—qurn

on remplace 7,1 par r,_3 — ¢n_17n_2 €t on remonte
Deux choses a démontrer :
- il existe au moins un couple deux entiers a et b inférieurs & n tels que ab =1 mod (n);

- pour tout m < n, (m®)* = m mod n.
Lemme 5.2.1 Soit a € Z,,. a est inversible dans Z,, si et seulement si pged(a,n) =1

Preuve : Inversement supposons pgcd(a,n) > 1. Puisque ab = 1 mod n, il existe k € Z tel que
ab+nk =1 mod n. D’apres le théoreme de Bezout a et n sont premiers entre eux. Ce qui est absurde.

Supposons pged(a,n) = 1 alors d’aprés le théoreme de Bezout il existe u et v dans Z tels que
au~+nv =1 dou au =1 mod n. Il suffit de prendre b = u mod n

L’unicité est évidente.
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En appliquant le lemme on a : Pour a tel que 0 < a < (p—1)(¢— 1) et premier avec (p —1)(q — 1),
il existe un b (unique) tel que 0 < b < n et ab=1 mod (p—1)(¢—1). L’existence d’un tel a est triviale
par exemple : 1 et (p—1)(¢—1) — 1.

En prenant a et b comme ci-dessus on obtient
Proposition 5.2.2 Pour tout m € Z,, : (m®)* = m mod n.

Preuve :

On montre d’abord que (m?)* = m mod p et (m*)® = m mod q.

Si p divise m : (m?)? = m =0 mod p

Si ¢ divise m : (m?)? = m = 0 mod ¢

Si m n’est ni mulitple de p ni mulitple de ¢ on a pged(m,p) = pged(m,q) =1 et :

(mb)s = mba — L HkE=Da=1) — p (P-Dla=1) )k

Le petit théoréme de Fermat donne alors : m®=1 =1 mod p d’ott m®-V@-Dk — 1 mod p donc
(m®)® = m mod p.

et on montre de méme : m?~Y =1 mod ¢ donc (m®)* = m mod ¢

Enfin, (m®)® = m mod pet(m®)® = m mod q implique (m®)* = m(modn).

(m®)* = m mod p d’ott p divise (m®)® — m d’out kp = (mb)a —m (m®)®* = m mod q d’on ¢
divise (m?)® —m d’ont k'q = (mb)a — m D’ott kp = k’q ce qui entraine p divise k' et ¢ divise k car
pged(p,q) = 1 (lemme de Gauss). D’ott k = k”gq, puis finalement kp = k”gp = (m®)® — m et donc

pq = n divise (m®)® —m

5.2.3 Algorithme d’Euclide étendu

L’algorithme d’Euclide donne le pged de deux nombres. En le prenant & ’envers, on peut I'utiliser

pour trouver les coefficients de Bézout.

Exemple 5.2.3 pgcd(38,17) =1

38=2x17+14

17T=4x4+1

4=2x240. D'ou
1=17—4x4=17—4x (38—2x17) =9 x 17 — 4 x 38.

5.2.4 Calcul des puissances modulo n

Comment calculer 1234561909 mod 456456789789 ? par exemple.

Calcul de z = M€ mod n. On note e(i) le itme bit dans la décomposition binaire de

t—1 A
e=)Y e(i)2

~
Il
o

On décompose e en base 2 : e = S '_ 1 e(i)2° Il y a [ logan | opérations.

Ce qui revient a calculer pour ¢ =1---¢
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Algorithm 1 Algorithme
7z :=1;

Pour i=t-1 a 0 faire
z :=z2 mod n;
si e(i)=1 alors z :=2.M mod n finsi

finpour

2t 2 .
a® modn=uz; | =

a® = aZf;é e(i)2" _ H ae(i)Qi = H;U?i mod n
K3
11 suffit de multiplier entre eux les z; dont les e(i) correspondants sont non-nuls : maximum [ logan ]
opérations.
Deuxiéme méthode :

On utilise le fait que a = b mod n implique a’® = ba mod n :

i-1

Ji- 0

tant que (kje) faire :

j i- j*a // on multiplie j par a

j i- jmod n // on affecte a j la valeur du reste de la D.E. de j par n
k j- k+1 // on incrémente la variable compteur k

retourner j

Cet algorithme fait n itérations de la boucle dont le temps d’exécution de chacune est similaire.

Cet algorithme est donc en temps polynomial, mieux : linéaire.

5.2.5  Tests probabilistes de primalité

Les algorithmes probabilistiques de test de primalité ont vu le jour dans les années 1970. Celui de
Miller-Rabin en 1977. Il est un raffinement du test de Solovay-Strassen. Miller-Rabin est utilisé dans
presque toutes les implémentations de RSA.

Comment générer de grands nombres premiers ?

Ce test repose sur 'exponentiation modulaire. Il consiste en :

- choisir un nombre au hasard entre 2 et n — 1

-si @' =1 mod n, déclarer que n est premier.

c’est une sorte de réciproque (probabiliste) du petit théoreme de Fermat.

En 1989, Su Hee Kim et Carl Pomerance, ont montré que le risque d’erreur F(n), par exemple
que pour n = 1019, si le test probabiliste de Fermat le déclare premier, alors la probabilité que n soit
effectivement premier est supérieure a 99,9999972%.

Rappelons que si 7(n) est le nombre de nombres premier et < n alors nous avons

n

w(n) ~ o (5.4)
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Définition 5.2.4 Soit p un nombre premier > 2 et x un entier tel que 1 < x < p. On dit que x est

un résidu quadratique mod p si il existe y € Zy, tel que v = y? mod p.

Théoréme 5.2.5 (Critére d’Euler) Soit p un nombre premier > 2. x est un résidu quadratique

mod p si et seulement si x®1/2 =1 mod p.

On suppose que qu’il existe y tel que 2 = y? mod p d’ott z?P~D/2 = (yQ)(p_l)/2 =yP~1 =1 mod p.
Preuve :
Inversement. Soit g un générateur de de Z,, alors il existe un entier 7 tel que zP—1/2 = (‘(yi)(”_l)/2 =

y"®=1/2 mod p. D’out lordre p de g divise i(p — 1)/2 d’ott i est pair et z = g/2.

Définition 5.2.6 (Symbole de legendre) Soit p un nombre premier > 2. Pour tout entier a

0 si a=0 modp
L(a,p) = 1 st a est un résidu quadratique mod p

—1 si a est un non-résidu quadratique mod p
Théoréme 5.2.7 Soit p un nombre premier > 2 . On a L(a,p) = a®~Y/2 mod p.

Définition 5.2.8 Soit n un entier impair dont la décomposition en nombre premiers est n = Hle pi

et a un entier. Le symbole de Jacobi est défini par n = Hle L(a,p;)°.

Algorithme de Solovay-Strassen

Mis au point en 1976.

1) on tire aléatoirement un entier a tel que 1 <a <n — 1.
2) si L(a,n) = a"1/2 mod n alors n est premier,
sinon n est décomposable.

L’algorithme de Solovay-Strassen est un algorithme polynomial en O((Inn)?)

Test de Miller-Rabin

L’idée est surtout de combiner plusieurs tests afin d’avoir une probabilité tres forte (99,999 ?%)

d’avoir un nombre premier.
Proposition 5.2.9 L algorithme de Miller-Rabin est polynomial, de complezité O((Inn)?).

Lemme 5.2.10 Soit n > 3 impair a € Z:+. On pose n — 1 = 2km ou m est impair. Si l'une des
conditions suivante est vraie alors n est décomposable.
i) a" ' #£1 modn;

.. _ 21 . . k
i) a" ' =1 mod n, a™ # 1 mod n et aucun des éléments de la suite a™, a®™, a*™, ---, a®™ n’est

congru a —1 mod n.
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Preuve :

i) c’est la contraposée du petit théoreme de Fermat.

ii) Soit b le dernier entier dans la suite a™, a®™, a*™, ---, qui n’est pas congru a 1 mod n, alors
b> =1 mod n or b # 41 mod n donc b — 1 et b+ 1 sont des facteurs non triviaux de n.

Sia € Z} + satisfait la condition :

i) du lemme ?7? a est appelé témoin de Fermat pour la non décomposabilité de n. On note
F,={a €Z;+ /a est un témoin de Fermat}

Tout a € Z}+ qui n’est pas premier avec n est un témoin de Fermat pour n

ii) du lemme ?7 a est appelé témoin de Miller.

Un entier n composé dont les seuls témoins de Fermat sont les nombres premiers avec n est appelé
nombre de Carmichael.

Le pus petit nombre de Carmichael est 561 = 3 x 11 x 17.
Proposition 5.2.11 Sin est un nombre composé mais n’est pas de Carmichael alors |F,| > n/2.

On considere B = ZF,, on a B = {a € Z|a""! = 1 mod n}. On vérifie facilement que B est un
sous groupe de Z et qu’il est propre puisque n est un nombre composé mais n’est pas de Carmichael.
D’apres le théoreme de Lagrange |B| divise Z;. D’ou |B| < (n —1)/2 . Donc |F,| = |Z}| — |B| > 3.

L’algorithme dit de Fermat suivant permet de tester si un nombre est probablement premier en
temps polynomial

Algorithme The Fermat ” Almost Prime” Test.
entrée : un entier n > 2.

Algorithme :
choisir a € Z

=1 =1 modn

if a
alors sortir ?7premier ?

sinon sortir 7composé 7.

Si I’entrée est un nombre premier alors cet algorithme affirme certaimement qu’il est premier. Mais
si n est un nombre composé mais n’est pas de Carmichael alors la proposition donne composé avec la
probabilité au moins %
Cet algorithme est utilisé dans certains cryptosystemes puisqu’il y a plus de nombre premier que

de nombre de Carmichael.

Théoréme 5.2.12 (Alford, Granville and Pomerance (1994)) Le nombre des nombres de Car-

2/7

michael plus petits ou égauzr a n est supérieur ou égale a n*/". En particulier il y a un nombre infini

de nombres de Carmichael.

L’algorithme suivant utilise les témoins de Fermat et de Miller.

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi



CHAPITRE 5. CRYPTOGRAPHIE A CLEF PUBLIQUE : RSA 70

Algorithme de Test de primalité de Miller-Rabin . Algorithme : test de primalité de Miller-Rabin
sur n
Choisir a € {1,--- ,n — 1}
Si PGCD(a,n) # 1, retourner ”composé”
Ecrire n — 1 sous la forme m.2* avec m impair
Si a™ =1 mod n, retourner ” premier”
Dei=0ak—1, faire :

i .
m-2" = _1 mod n, retourner ”premier”

sia
i=i+1

Retourner ”composé”

Théoréme 5.2.13 L’algorithme de test de primalité de Miller-Rabin est probabiliste et polynomial.
Soit lentré n.
i) sin est premier alors l'algorithme donne tjrs premier.

i) sin est composé alors la probabilité pour que l’algorithme donne composé est > fracl2

Preuve : i) Supposons que 'entrée n est premier. pour tout a € Z on a pged(a,n) = 1. L’algorithme
ne peut donner composé en ligne 2. Le seul cas ou il peut sortir composé est si ¢ # 1 mod n et
am? % —1 mod n pour tout 0 < i < k — 1. Dans ce cas on a soit :

a" 1'% 1 mod n d’ol a est un témoin de Fermat pour n.
ou a” ! =1 mod n d’oil a est un témoin de Miller pour n.

Ce qui est impossible puisque n est premier d’apres le Lemme £.2.T01

ii) On considere deux cas :

1) n est composé et n’est pas un nombre de Carmichael
o

Supposons que ’algorithme donne ”premier”. On a alors soit : ¢ = 1 mod n ou a™* = —1 mod n

"=l =1 mod n , d’ot1 a n’est pas un témoin de Fermat

pour un certain 0 < ¢ < k—1. Dans les 2 cas a
pour n. Mais d’apres la Proposition 5.2.ITlon a |F,| > 5. Donc Pr(I’algorithme donne composé > %)
2) n est est un nombre de Carmichael
On considere deux sous-cas :
a) n n’est pas une puissance d’un nombre premier
On pose

t =mazx{0 <i<k—1|Ja € Z;, tel que a™? = —1 mod n}

et
B, ={ac€ Zmam'zi =41 mod n}

si a € B; 'algorithme donne composé.

5.3 Remarques sur RSA

Souvent on utilise RSA en combinaison avec avec un crypto-systeme a clef privée. (PGP)
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5.4 Attaques

Il y a deux types d’attaques pour un systeme a clé publique :

i) attaque sur la clé : étant donnée la clé publique, retrouver la clé secrete. Pour RSA, il s’agit,
étant donné (N, e), de retrouver (p,q,d). On peut montrer que c’est équivalent a la factorisation de
N.

ii) attaque sur le message : étant donnée un message chiffré, retrouver le message clair M corres-
pondant. Pour RSA, comme ¢ = M¢ mod n , il s’agit d’extraire des racines e-¢émes modulo n.

On montre que le calcul d’une des clefs a partir de 'autre est équivalent au probleme de la facto-
risation.

Il n’est pas encore établi que la cryptanalyse du RSA est équivalente au probleme de la factorisation.

5.4.1 Sécurité

Le record actuel de factorisation est de 200 chiffres décimaux (RSA-200), soit 663 bits. Cette
factorisation a été annoncée par Bahr, Boehm, Franke et Kleinjung le 9 mai 2005. Il est recommandé
d’utiliser une clé d’au moins 1024 bits. Aussi, p et q doivent étre des nombres premiers forts, i.e. tels
quep—1,p+1,¢—1, ¢+ 1 ont un grand facteur premier. De méme, sir = (p—1)/2 et s = (¢—1)/2,
r —1 et s — 1 doivent avoir un grand facteur premier. L’exposant privé d ne doit pas étre choisi trop
petit ; par contre, on peut prendre e petit pour accélérer le chiffrement (e = 65537 est classique).

les clés 1 024 bits ne seront bientot plus un standard. Dans une publication spéciale de mai 2006,
le (NIST) National Institute of Standards and Technology avait recommandé que cette clé ne soit
plus utilisée apres 2010 [?]. Le méme mois, les Laboratoires RSA avaient publié des recommandations
invitant & passer aux clés de 2 048 bits. De quoi étre tranquille jusqu’en... 2030, selon RSA [?]. D’autres
prévisions prévoient, puisque la puissance des ordinateurs double tous les 18 mois (loi de Moore), une
clé de 2048 bits devrait tenir jusqu’a ... 2079.

Mais il faut également prendre en considération la possibilité d’apparition que de nouveaux algo-
rithmes de factorisations soient découverts dans I'avenir et permettent de réduire le temps de factori-
sation nécessaire sur grands nombres.

Il a été prouvé théoriquement qu’un modele d’ordinateur, dit quantique, permettrait de factoriser
trées rapidement des entiers. Dans le cas de la mise en pratique de tel modele, le systeme RSA devien-
drait obsoléte ainsi que le probleme du logarithme discret et donc Diffie-Hellman et la cryptographie

a courbe elliptique.

5.4.2 vitesse de RSA

Compte tenu de la complexité des traitements, le DES est environ 100 fois & 1000 fois plus rapide
que le RSA.

5.5 Exemple d’application de RSA

Sécurisation de transactions sur 'Internet. Cartes a de crédit bancaires
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Le numéro de carte de crédit est un numéro de 16 chiffres auquel on ajoute les 4 chiffres de la date
d 7expiration, soit au total 20 chiffres.

On utilise RSA pour la transmission du numéro de carte de crédit sur Internet.

on choisit p et ¢ deux grands nombres premiers p = 9760959751111112041886431, ¢ = 8345523998678341256+

on calcule n = pg81460323853031154412157864943449033559900223014841

et p(n) = (p—1)(¢ — 1) = 81460323853031154412157846836965283770446924637300

on choisit sa clé de chiffrement e = 45879256903 et on calcule son inverse d (modgp(n)) :

d = 61424931651866171450267589992180175612167475740167

Un client dont le numéro de carte de crédit est 1234 5678 9098 7654 et la date d’expiration est
le 01/06 enverra donc le message M = 12345678909876540106. L’application d’envoi calcule M’ =
M¢€ (modn) soit

M’ = 6251765106260591109794074603619900234555266946485.

Le nombre M’ est transmis. A la réception on calcule : (M')4 = 12345678909876540106 (modn).

Qui correspond donc bien au numéro de la carte de crédit ainsi que sa date d 7expiration.

5.6 Exercices

Exercise 5.7 1. Sin est un entier impair et m; = mg mod n alors L(my,n) = L(ma,n)
1 sin==+1 mod8
2. Sin est un entier impair alors L(2,n) = _
-1 sin=243 mod8
3. Sin est un entier impair alors L(myma,n) = L(my,n)L(ma,n). En particulier si m = 2Ft ou
—L m=n=3 mod 4
t est impair alors L(m,n) = (n,m) SZ, m " mo
L(m,n) si sinon
—L(n,m) sim=n=3 mod4

4. Sim et n sont des entiers impairs alors L(m,n) = o
L(m,n) si sinon

5.8 Théoreme de Fermat

Théoréme 5.8.1 (Petit théoréme de Fermat) Soit p un nombre premier. Pour tout entier a pre-
mier avec p on a : a?~t =1 mod p.

Autrement dit si p est premier alors pour tout entier n on a : aP = a mod p.
On peut diminuer la taille des exposants dans les calculs :

Théoréme 5.8.2 Soit p un nombre premier. Pour tout entier a premier avec p et pour tout exposant

d mod p—1 mod p.

entier d on a la relation : a® mod p = a
Théoréme 5.8.3 Soit p un nombre premier. Pour tout entier a on a la relation : o = a mod p.

Théoréme 5.8.4 Pour tout entier a premier avec n on a la relation : a¥™ =1 mod n.

Théoréme 5.8.5 (Théoréme de Wilson) : un entier p est premier si et seulement si (p — 1)! =

—1 mod p

Inutilisable en pratique pour savoir si un nombre est premier : trop lent
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5.9 Meéthodes de factorisation

5.9.1 Le crible d’Eratosténe

C’est la méthode naive qui consiste & diviser n par tous les nombres < y/n. Il est vieux de plus de
2000 ans.

Proposition 5.9.1 Le crible d’Erastosthéne est de complexité O(y/n(Inn)?)

Preuve : 11 faut faire \/n divisions dont le temps de calcul est O(Inn)?)
Imaginons un ordinateur capable de réaliser 10° divisions par seconde! Si n est de I'ordre de 21024
, /1 = 1099, 11 faudrait donc au crible d’Eratostéme pres de 100 secondes ce qui dépasse de tres

loin ’age de I'univers!

5.9.2 La méthode de Fermat

Proposition 5.9.2 Soit n = p.q, avec p > q > 0 des entiers impairs. Alors

2 2
_ _(Pt4q Pp—gy\ _ 2 2
n=pq= — ) |3 =u"—v

2 quec u = (p+q)2 etv=(p—q)2 sip et q sont proches alors v est petit et

Autrement dit, u> —n = v

u est trés voisin de \/n.

Méthode de Fermat :
Initialiser u & v/n

2

Tester si u* — n est un carré

2 _n=9%alors n = (u—v)(u+v)

Si oui, u
Sinon, incrémenter

Exemple :
n = 387400807. On a : [y/n = 19683
- 196832 — 387400807 = 19682 n’est pas un carré
- 196842 — 387400807 = 59049 = 2432 est bien un carré!

On obtient ainsi la factorisation de n : n = (19684 — 243)(19684 + 243) = 19927.19441 On vérifie
que 19927 et 19441 sont des nombres premiers.

Si p et q pas tres proches, le processus peut étre long.

Cet algorithme est de complexité O((Inn)?), en effet, le seul calcul & effectuer est une exponentiation

modulaire de complexité O(In(n?1)(Inn)?) = O((Inn)?).
5.9.3 La méthode p — 1 de Pollard
Adapté pour la factorisation de nombres n friables. La friabilité (en anglais smoothness).

Définition 5.9.3 (Nombre B-lisse) Soitn € N et [[,_; kp;* sa décomposition en facteurs premiers.
n est dit B-lisse si pour tout 1 <1<k on a p; < B.
n est dit B-superlisse si pour tout 1 <i <k on ap; < B < p’
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Définition 5.9.4 (Nombre friable) Soit n € N et p un facteurs de n. p est dit friable sip — 1 est

B-superlisse avec B "petit”.

Principe : trouver un multiple () de p — 1 sans connaitre p.
Fermat : pour tout a € N et premier avec n on a a® =1 mod p.
En particulier, p divise a@) — 1 et p divise n.
Si n ne divise pas a@ — 1 alors pged(a@) — 1,n) = p ainsi on trouve un facteur p de n.
Impact sur cryptosystéemes a clefs publiques : Choix des parametres p et ¢ dans RSA et Rabin
(g <p) p—1et g—1nesont pas B-lisse pour B "petit”.
Probleme : Comment trouver ) adéquat tel que (p —1)|Q?
Soit mp 'ensemble des nombres premiers < B
Si p — 1 est supposé B-superlisse :

1) p— 1 divise Q1 = ppecm{q'/q € mp et ¢' < B}, Plus précisément : Q = qumg g B/Ing]

2) Si p — 1 est supposé B-lisse :
p — 1 divise Q; = ppem{q'/q € 7p et ¢¢ < n}, Plus précisément : Q; =[] glnn/Ing]
En général, B << n et donc Q1 << Qs.
Exemple : Soit & factoriser n = 969169. On pose B = 10 d’ou np = {2,3,5,7} et Q1 = 23.32.5.7
On choisit a = 3 : pged(3,n) = 1, aQ1 = 323.32.5.7 = 613986, Calcul de d = pgcd (613986 — 1,n) =
281. Autre facteur de n : n , d = 3449, 969169 = 281.3449. Remarque : d — 1 =280 = 23 X 5 X 7 est

10-superlisse.

qETRB

5.9.4 La méthode p de Pollard

Nous utilisons une fonction f : Z, — Z, ”simple” pour générer une suite aléatoire de la fagon

suivante :

xg € L,
{ xiy1 = f(x;) pour tout i € N
Il y a forcément des collisions c’est a dire il existe des entiers i # ' et x; = ;.
En pratique on prend pour f une fontion polynomiale de degré 2 f(z) = (2% + ¢) mod n avec
ceZ*
Si p|n, les x; distincts mod n le seront souvent mod p. On calcule les {x;};>0 jusqu’a obtenir ;
et o (j < k)

xj # xp, mod n
{ x; = 1), mod p
O p est un facteur non trivial de n en fait p = pged(|xy — x;],n)
Méthode p de Pollard : On évalue les {z}r>0. Pour chaque nouvel élément z :
- Evaluer pgcd(|xy, — x|, n) pour tous les {x;}o<;>k. - Si aucun facteur non-trivial n’est trouvé, passer
a Tpi1
Variante de la méthode p de Pollard : On évalue les {z}};r>0 pour chaque k, on détermine m tel
que 2™ < k < 2™+ 1, (m+1 = nombre de bits de k) On pose alors j = 2™ — 1) (plus grand entier de
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m bits) On calcule alors pged(|zy, — |,n) si on obtient un facteur non-trivial : on a gagné, sinon, on
passe & Ti41
Avantages :
1) un seul pged a calculer & chaque étape;
2) un seul élément supplémentaire stocké en mémoire

On ne détecte pas la lere collision mais on n’attendra pas trop. On triple au pire le nombre d’étapes

nécessaires.
Exemple : Soit n = 20467. On utilise f(z) = 22 + 1 mod n avec zo = 1.
‘ i ‘ x| ‘ xj ‘ |z — ;] ‘pgcd(xi—xj,n) ‘
o[ [ ] |

un facteur non trivial den : 97 on an = 97 . 211 Remarque : on a pas detecté la premiere collision !
pged(z® — 2%, n) = pged(8051,20467) = 97.

Théoréme 5.9.5 L’algorithme p de Pollard a plus d’une chance sur deux de se terminer en O(\/p)

étapes.

Permet de factoriser des nombres de 25 chiffres avec des facteur de 12 chiffres. Choix des parametres

p et ¢ dans RSA ou Rabin. Les facteurs p et ¢ sont suffisamment grand !

5.9.5 La méthode du crible quadratique de Pomerance

Méthode tres efficace pour les nombres < 129 chiffres.

Pour n € N composé, trouver z et y tels que

z? = 9% mod n
x # +y mod n

Dans ce cas : n divise (x —y)(x +y) et n ne divise pas (x +y) d’ou pged(z —y,n) est un diviseur strict
de n.

Probleme : Comment construire = et y 7

Construction de z et y satisfaisant 2> = y? mod n

On pose m = [/n] et f(X) = (X +m)? —n. On a donc pour tout t € Z : (t +m)? = f(¢) mod n.

On évalue cette relation pour plusieurs valeurs de ¢t :

(t1 +m)%2 = f(t1) modn
(ta +m)? = f(t2) modn

(ts +m)? = f(ts) modn

On choisit r relations {1, - - , i, } tel que f(t;,) - -- f(t;,) soit un carré, d’ou z = (t;, +m) - - - (t;, +m)
et y=+/f(ti,) - f(t;,.) conviennent.
Soit B > 0 et F(B) = {—1} N {p premier/p < B} = {p1,p2,--- ,pr} On suppose avoir s > k

relations {1, ,is}/f(ti;) est B-lisse : Pour tout ¢ € {i1, -~ ,is}/f(t;;) on a f(t;;) = [[;—4 kpS™

on
J

note a;; = aj; mod 2
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s > k alors les lignes v; de la matrice (ai;)1<i j<i sont liés dans k.
Pivot de Gauss donne la relation de dépendance linéaire sur Fg v;; +--- 4+ v;,, =0 pour r < s
En particuier

Pip gt Ty g

flti)--- ft) = [Jke; 2
j=1

Il reste & montrer comment trouver ¢ tel que f(t) soit B-lisse :
Tester pour t € {0,£1,42,---} si f(¢) est B-lisse. Trop long : il faut diviser f(¢) par tous les p premier
< B.

Méthode du crible : On fixe ¢ € N* et un intervalle T, = {—c¢,--- ,0,--- , ¢} appelé intervalle de
crible.
On calcule f(t) pour tous les t € T, Pour p € F(B), on divise f(t) par la plus grande puissance de p
divisant f(t). f(t) est B-lisse si on obtient +1 & la fin de ce processus.

Exemple

5.9.6 La méthode GNFS
5.10 Résolution du probleme du logarithme discret

5.10.1 Méthode naive

Recherche exhaustive : Tester, pour x =0,1,2,--- | si g* = h est vérifiée dans G.
Cout mémoire : O(1) (z, g, greth) Cott en nombre d’opérations : O(1) Il faut trouver des méthodes
plus efficaces !

Notamment O(y/n) opérations

5.10.2 Méthode Baby Step Giant Step de Shanks

Description de la méthode Soit m = [n]. On fait la division euclidienne de x par m : il existe
¢reZ:x=gmn+rould <r<m.

Principe : trouver ¢ et r pour en déduire z en utilisant : hg™" = (¢™)%.

1) Baby Step : Déterminer I'ensemble B = (hg™",r) ou 0 < r < m. si il existe r € [0, m] tel que
(1,r) € Balors z = .

2) Giant Step : Soit t = ¢". Pour ¢ = 1,2,--- faire si il existe r € [0, m[ tel que (t,r) € B, alors
r=qm—+r.

Complexité : mémoire O(y/n); opérations O(y/n).

Exemple :

5.10.3 Méthode p de Pollard

O(y/n) opérations mais seulement O(1) place mémoire !
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5.10.4 Méthode de réduction de Pohlig-Hellman
5.10.5 Méthode de calcul d’indices

Exercice : Ecrire un programme utilisant cette méthode.

5.11 Exercices

Exercice 1. Bob utilise RSA et publie sa clé publique N = 187 et e = 3.
1. Encoder le message m = 15 avec la clé publique de Bob.

2. En utilisant le fait que ¢(IV) = 160, retrouver la factorisation de N, puis la clé privée de Bob.

Exercice 2. Soit N =39 et e = 29.
1. Calculer d.

2. Coder le message m = 2 et vérifiez le résultat en le décodant.

Exercice 3. La clef publique est (N,e) = (35,5), on recoit le message M = 10, retrouver le message

original M.

Exercice 4. Bobl et Bob2 ont pour clé publique RSA respectivement (N, e;) et (N, eq2) avec e; et eg
premiers entre eux. Alice envoie le méme message M crypté par les clés publiques RSA de Bobl et
Bob2 en ¢; et cy. Expliquer comment Eve, qui intercepte les deux messages chiffrés et qui connait les

clés publiques de Bobl et Bob2, peut retrouver le message clair M.

Exercice 5. Soit le message M = 11 a chiffrer avec le crypto-systeme RSA défini avec les clés publiques
e =3 et N = 187. Donner le chiffré C' de M. Sachant que N = pq, avec p = 11 et ¢ = 17, déchiffrer
d =23

Exercice 6. Soit N = pq impair avec p > ¢ sont des entiers premiers.
L. Vérifier que N =12 — s = (t + s)(t — s) avec t = EF et s = 254
2. On suppose que p est tres proche de g, montrer que ¢ est supérieur a v N et tres proche de V.
3. Utiliser ces remarques pour factoriser N = 4397231.

4. Conclure

Exercice 7. a) On suppose que Alice et Bob utilisent l'entier n et RSA avec deux clés publiques e4
et ep premiéres entre elles. On suppose que Caroline envoie le méme message chiffré m4 et ms8 a
Alice et & Bob. Montrer que Eve qui écoute les communications peut retrouver facilement le message
m.

b) A fin d’améliorer la sécurité des messages Bob choisit deux exposants e; et ey et demande a
Alice de chiffrer d’abord son message par e; , pour obtenir ¢; = m® puis de re-chiffrer par es pour
obtenir ¢y = ¢]? et d’envoyer cy. Est-ce que ce double chiffrement améliore la sécurité. Si oui pourquoi,

si non pourquoi.
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Chapitre 6

Cryptographie a clef publique :
ElGamal

Sommaire

ElGamal est un cryptosysteme asymétrique basé sur le probleme du logarithme discret, comme le
protocole de Diffie-Hellman . Ce crypto-systeme est inventé en 1984 par Taher Elgamal, un crypto-
graphe égyptien.

Son inconvénient par rapport & RSA est que le message chiffré est deux fois plus long que le message
clair.

Cet algorithme est utilisé par le logiciel libre PGP, et d’autres systemes de chiffrement. Il n’est pas
breveté contrairement & RSA. Il peut étre utilisé pour le chiffrement et la signature électronique (voir
plus tard).

Le calcul de logarithmes sur le corps de nombres réels est facile. Mais ce calcul est difficile sur les
corprs de Galois F,,.

Courbes elliptiques

ElGamal Signature

6.1 Description de ElGamal

génération de la clef
Destinataire :
- choisit deux parametres publiques : un nombre premier p et un générateur g du groupe (Z;;, )

choisit aléatoirement un nombre a dans [1,--- ,p — 2] et calcule a = g* mod p.

garde secréte sa clé a et publie (p, g, a).

Emetteur : chiffrement

exprime son message sous la forme d’un nombre M entre 0 et p — 1 (quitte & le décomposer).
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- choisit aléatoirement un nombre b dans lintervalle [1,--- ,p — 2] et calcule 8 = ¢” mod p.
- chiffre alors son message M en C' = a’.M mod p.

- envoie au destinataire le couple (5, C).

Destinataire : déchiffrement
- Pour déchiffrer le message, le destinataire calcule x = p — 1 — a, calcule 5*.C' mod p et retrouve le

message M. En effet :

xT

BE.C = (¢")C = "= ob M = gPP=1=0) gab pp = ghle=1) g=ab gab N = M mod p

car gb(pfl) = 1 mod p d’apres le petit Théoreme de Fermat.

6.2 Remarques

1) Il est conseillé de changer la valeur de son parametre b pour chaque nouveau message. Supposons,
que deux messages M et M’ soient cryptés avec la méme valeur de b et qu’une tierce personne connaisse
le texte clair M : C' = a®.M mod p et C' = o’ M’ mod p Alors,

C'C7t =t MM' 1 (a®)7t mod p = MM~ mod p

et
M' = C'(M'")™'M mod p

et on déduit M.

2) L’utilisation du parametre aléatoire a renforce la sécurité car le méme message M chiffré a 2
moments différents donnera deux messages chiffrés différents.

Exemple

Supposons qu’Alice et Bob choisissent le nombre premier p = 1259 et g = 3.

Alice choisit 2 = 144 et calcule 34 = 572 [1259].

Alice envoie 572 a Bob.

Bob choisit i = 731 et calcule 37! = 900 [1259] Bob envoie 900 & Alice.

Alice calcule 900144 = 572731 = 26 [1259] Donc Alice et Bob peuvent utiliser la clé K = 26.

6.3 Exercices

Exercice 1. Alice choisit p = 97 et g = 13.
(a) Elle choisit aléatoirement un nombre a, disons 45, dans I'intervalle [1,--- ,95].
(b) Elle calcule @ = (13%* mod 97) = 20.
(c) Elle publie sa clé (97, 13, 20) et garde secrete sa clé 45.
Bob veut envoyer le message RAS a Alice.
(a) En utilisant le code ASCII, son message est 118 101 119.
(b) 11 le découpe en nombres entre 0 et 97 : 11 81 01 11 09.
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(c) 11 choisit aléatoirement un nombre b, disons 35, dans 1 ?intervalle [1,- - ,95].

(d) T calcule 8 = 133% mod 97 = T1mod97.

1. Vérifier que le chiffré de son message est (71, 21 40 46 21 26). 2. Comment Alice déchiffre-t-elle le
message de Bob ? Déchiffrer-le.

Exercice 2. Soit G un groupe cyclique, soit = un ?élément d’ordre r et y un élément d’ordre s.

1. Montrer que le sous-groupe engendré par z et y a pour cardinal ppem(r, s).

2. Comment peut-on choisir un générateur de la forme g = ziy? ?

3. Soit G = (Z/417)" ; calculer I'ordre de 2 (resp. l'ordre de 3) et en déduire un générateur en
utilisant la question précédente.

4. Combien de générateurs le groupe (Z/41Z)" possede-t-il ?

Exercice 3. Danny veut partager un secret n entre Alice, Bob et Charlie, sans que deux d’entre
eux puissent le reconstruire. Il fabrique un groupe GG , un générateur g de grand ordre dans G , et
une décomposition n = a + b + ¢, puis donne g & Alice, g® & Bob, et ¢¢ & Charlie. Ils peuvent ainsi
reconstruire g en multipliant leurs valeurs : " = g%¢%¢¢ . 1) La donnée de g™ ne permet pas facilement
de retrouver la valeur de n . Comment contourner ce probleme ?

2) En supposant que le secret est maintenant g”, Alice et Bob peuvent-ils le reconstruire sans ’aide
de Charlie?

3) En supposant encore que le secret est m, qu’Alice connait a, que Bob connait b, et qu’ils

connaissent tous les deux ¢¢, peuvent-ils retrouver n ?

Exercice 4.
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Chapitre 7

Fonction de Hachage

Sommaire

Objectif de la cryptographie :

- la confidentialité des données; (réalisée par les algorithmes de chiffrement et de déchiffrement,
DES, IDEA, RC4, RSA, ElGamal etc )

- l'intégrité des données : prévention de modification non autorisée de données. (réalisée par les
fonctions de hachage).

- authentification : vérifier que le message provient bien de celui qui prétend en étre I’émetteur.
(réalisée par les fonctions de hachage).

- la non-répudiation (ou non-désaveu) : prouver qu'un message a bien été émis par son expéditeur
et que ce dernier ne peut nier 'avoir transmis. (Se résout par la signature électronique.)

Une fonction de hachage transforme un message de taille arbitraire en une chaine de taille fixe
(typiquement entre 128 et 512 bits).
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Sous Linux la commande md5sum permet de calculer le haché d’un fichier. Pour 'utiliser nd5sum nomFichier
et pour plus de détail sur cette commande man md5sum

Sous Windows on peut télécharger le programme MD5Summer de Il est gratuit et a interface
graphique.

Applications des fonctions de hachage : signature électronique, recherche dans une table stockage
de mots de passe, vérification de I'intégrité d’un fichier : téléchargement, confirmation de connaissance,
etc.

Protection de mots de passe : au lieu de stocker tous les mots de passe dans le serveur pour
I'authentification d’utilisateurs, il vaut mieux stocker le hache des mots de passe.

Confirmation de connaissance : si quelqu’un veut prouver qu’il connait un secret sans le révéler
dans 'immeédiat, il peut publier le haché de ce secret. Une fois le secret révélé, il est facile de vérifier

ses dires.

7.1 Définitions

Définition 7.1.1 (Fonction a sens unique) Une fonction H : X — Y est une fonction a sens
unique si pour tout x il est facile de calculer H(x) mais, sachant H(x), il est trés difficile de trouver

x.

Exemple 7.1.2 Soit p et ¢ deux nombres premiers entre euzx et grands :

- H(p.q) =p.q et;

- H(z) =22 mod n otin = pq;

sont des fonctions a sens unique. La factorisation de grands entiers La fonction logarithme discret :
Soit p un grand nombre premier et g une racine primitive modulo p, il s’agit de retrouver a connaissant
Aetg /g*=Amodp avec)<a<p-—2.

Définition 7.1.3 (Fonction de Hachage) Une fonction de hachage H est une application facile-
ment calculable qui transforme une chaine binaire de taille quelconque t en une chaine binaire de taille

fixe n (n petit entre 100 et 200), appelée empreinte, haché ou condensé de hachage.

Définition 7.1.4 Une fonction est dite :

- résistante auz collisions si est difficile de trouwver deux messages M et M’ distincts tels que H(M) =
H(M).

- résistante auxr pré-images si étant donné un haché y, il est difficile de trouver un message M tels
que H(M) = y.

- résistante aux secondes pré-images si étant donné un message M, il est difficile de trouver M’ tel
que H(M) = H(M').

Une fonction de hachage est sécurisée si elle est a la fois résistante aux collisions, aux pré-images
et aux secondes pré-images :

Remarques :

1. www.md5summer.org/
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m =7 mq mo =7 my =7 mg =7

h(m) h(my) = h(mz) h(m1) = h(ms)
(a) (b) (©)

FIGURE 7.1 — (a) : résistance a la pré-image, (b) : résistance & seconde pré-image, (c) : résistance aux

collisions

Résistance a la collision = résistance a la seconde pré-image = résistance a la pré-image.

La résistance a la pré-image est équivalente a fonction a sens unique.

Soit h(x) = x? mod p pour p premier. Ce n’est pas une fonction a sens unique car le calcul de
racine carré modulo p est facile. Pour n = pq avec p, ¢ premiers, h(z) = 22 mod n est & sens unique,
car le calcul de racine carré modulo n est r réputé difficile. Par contre h(z) = (x + n)? modn = x?
n’est pas résistante aux collisions (faibles ou fortes), car h(x) = h('z).

La résistance aux collisions n’implique pas la résistance a la pré-image. En effet, soit f une fonction
résistante aux collisions dont le haché est de longueur n. On définit une fonction de hachage h de

longueur n + 1 par

1|z si |z]=n

h(z) = _
0/ f(x) sinon

h est aussi résistante aux collisions. Mais si on se donne 1|z alors h(x) = 1]||x.

7.1.1 Paradoxe des anniversaires

Dans un groupe de n personnes, quelle est la probabilité pour que deux d’entre-elles aient leur
anniversaire le méme jour ? (c-a-d méme jour et mois, mais pas forcément I’année).

Par exemple pour n = 23, Intuitivement cette probabilité est-elle beaucoup proche de 0 ou de % ?
. 1
P(pas de collusion entre 2 personnes) = (1 — —

1 2
P(pas de collusion entre 3 personnes) = (1 - —) <1 - —)

1 2 -1
P(pas de collusion entre n personnes) = <1 — %> <1 — —> <1 o >

pour n = 365 il y aura stirement collision.

1 23 -1
P(au moins une collusion) = 1 — P(pas de collusion) = <1 — %> <1 - > = 0,507 ~
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Pour 40 personnes cette probabilité est d’environ 90%.

On cherche cette probabilité dans un cas plus général. Pour une fonction de hachage il n’y a pas
365 valeurs mais 2" ou n est la longueur de h(m).

Question : combien de messages {mj, ma,---,my} & hacher pour avoir une chance raisonnable
d’avoir h(m;) = h(m;) oui,j € {1,2,--- ,k}?

1 2 n-1\ i
P(pas de collusion) = (1 - 2—n> <1 - 2—n> <1 ~~om ) = Zl_Il <1 - 2—n>

Rappelons que e™ =1 —z + Zjﬁ§(—1)i§—f pour tout z € R, et pourz <<lonae*~1—-z

1424t k—1 _ (k=1)k
2n

. i
P(pas de collusion) = e 2" ~ e e 22m

Le but est de trouver combien de messages x; faut-il pour avoir une collision ? on cherche alors k.

on suppose k >> 1 d’ou k? =~ (k — 1)k d’ott

. 1
k~2"%[In (—) (7.1)

Pourpz%onak:wQ%
Remarque 7.1.5 Comme conséquence du paradoxe des anniversaires, pour une fonction de hachage
H :{0,1}* — {0,1}" le nombre de messages a hacher pour trouver une collusion avec une probabilité
% est de 27

La recherche brutale de collisions a plus d’une chance sur 2 d’aboutir aprés seulement (’)(2%)
essais !

On est str d’aboutir aprés O(2™) essais.

Sin = 80, k ~ 2402,

C’est pour cette raison que toutes les fonctions de hachage sont de longueur > 128.

7.2 Construction de fonctions de hachage

Une fonction de compression est une fonction qui transforme toute chaine d’une taille fixée n en
une chaine de taille fixée m avec n >m : f:{0,1}" — {0,1}™.
La construction de fonction de hachage nécessite deux ingrédients importants :

1) une fonction de compression de {0,1}' — {0,1}" ol ¢ et n sont des entiers fixes avec t > n.
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mi ma mg

S Y Y N A L A
i f I f f A g (z)

FIGURE 7.2 — Construction d’une fonction de hachage h a partir d’une fonction de compression f

2) un extenseur de domaine, qui & partir d’une fonction de compression donné, produit une fonction

a entrée arbitraire.

7.2.1 Construction de Merkle-Damgard

Cette construction a été proposée indépendamment par R. C. Merkle [6] et I. B. Damgard [5] fin
des années 1989.

La construction de Merkle-Damgard (1989) est la méthode la plus répondu pour fabriquer des
fonctions de hachage. Elle se base sur une fonction de compression.

Comme fonction de compression on peut considérer une fonction de chiffrement, car celle-ci prend
en entrée un bloc clair de longueur n et la clé de longueur £ et le bloc chiffré en sortie est de longueur
n.

Elle permet de réduire le probleme de la construction d’une fonction de hachage résistante a la
recherche de collision/preimage a celui de la construction d’une fonction de compression résistante a la
recherche de collision/preimage : si I'on ne trouve pas de collision/preimage pour h, alors on ne peut
trouver de collision/preimage pour H.

La plus part des fonctions de hachage I'utilise. Elle se fait & partir d’une fonction de compression.

Théoréme 7.2.1 (Damgard) Si la fonction de compression f est résistante aux collisions alors la

fonction de hachage obtenue est résistante aux collisions.

Se base sur une fonction de compression h : {0,1}* x {0,1}"* — {0,1}"

Application au calcul de H(M) :

Application d’un padding & M pour avoir |M| = k.b bits : on ajoute un 1 a droite de M puis
suffisamment de 0. On ajoute le 1 et b — 1 zéros méme si |M| est déja multiple de b.

Découpage du message M obtenu apres le padding en blocs de taille b

M =mimgy---mp_1my, avec |M;| =b € i € [1,k]. Itération de la fonction h . Voir Figure

Itération sur les blocs : Hy = IV : Valeur initiale
Hy=0---0, n fois
H; = f(H;—1[|lm;)
h(M) = Hy,

Remarque : On peut utiliser les chiffrements par bloc comme fonction de compression.
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F1GURE 7.3 — Construction de Davies-Meyer

7.2.2 Construction de Davies-Meyer

Voir Figure [.3] Soit la fonction de chiffrement £. On partage le message m & hacher m =
momy ---my (on complete si besoin) m; est de méme longueur que la longueur de la clé de &. le
message m a hacher Les blocs d’entrée m; sont les clés de la fonction de chiffrement £. H; est le bloc
a chiffrer par £.

Hy valeur initiale.

et

7.2.3 Construction de Matyas-Meyer-Oseas

La construction générique de Matyas-Meyer-Oseas (appelé aussi CBC-MAC) Voir Figure [[.4] est
basée sur une fonction de chiffrement par bloc & : Elle sera améliorée par Miyaguchi-Preneel.

Soit la fonction de chiffrement £. On partage le message m & hacher m = mgmy - - - my, (on compléte
si besoin) m; est de méme longueur qu’un bloc & chiffrer de £. Le message m a hacher Les blocs d’entrée
m; sont a chiffrer par £. H; sont les clés de £. On considere une fonction g qui transforme n bits en
chaine de méme longueur que la clé.

Hj valeur initiale.

et

7.2.4 Miyaguchi-Preneel

Voir Figure
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F1GURE 7.5 — Construction de Miyaguchi-Preneel

7.3 Applications des fonctions de hachage : MDC et MAC

Deux types d’utilisation
Une fonction de hachage est aussi appelée MDC (Modification Detection Code). Elle est sans clef.

On peut l'utiliser pour s’assurer uniquement de l'intégrité de messages. Par exemples MD4, MD5,
SHA-1.

HMAC est utilisé dans les protocoles TLS (Transport Layer Security) et IPsec

Par contre pour 'authentification on utilise des fonctions de hachage avec clef, appelé aussi MAC
(Message Authentication Code). Les MAC permettent de vérifier I'intégrité et Pauthentification du
message en méme temps. Elle prouve que 'expéditeur possede la clé

Construction de MAC Idée : concaténer la clé avec le message a authentifier. HMAC (standard)
Parametres K clé jusqu’a 512 bits.

h fonction de hachage. M message & authentifier. || symbole de concaténation.
MAC(K,M) = h(M||K)

ou

MAC(K, M) = h(K||M)

Cette construction est faible.

Une construction plus sécurisée est la suivante.
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7.3.1 Construction HMAC

Construction de M. Bellare, R. Canetti et H. Krawczyk : Soit h une fonction de hachage qui
produit des hachés de longueur £. Soit M le message a authentifier et K la clé partagée par les deux
correspondants. La longueur de K doit étre inférieure a 64 octets. On complete K par des zéros a
droite pour avoir une longueur de 64 octets.

On définit deux chaines fixes ( i=inner, o=outer)

ipad= l'octet 0x36 répété 64 fois,

opad = loctet 0x5C répété 64 fois,

HMACK(M) = (K @ opad||h(K @ ipad||M)) (7.2)

La longueur recommandée de K est au moins £. Une grande longueur n’augmente pas la sécurité
de facon significative.

Optionnellement, HMAC permet la troncature du résultat final & 80 bits.

7.4 Preuve sans transfert de connaissance

Exemple : Un jeu de Pile ou face par Téléphone.

Ils se donnent un ensemble E par exemple E = {0,1,--- ,n} et une partition £ = Xy U X; de E,
X0 sera les entiers pairs de F et X1 les entiers impairs de F. Puis ils se mettent d’accord sur une
fonction de hachage, h, de E' dans un ensemble {0,1}" . On consideére le protocole suivant :

1. Alice choisit un élément = € E aléatoirement (c’est le jet de la piece), calcule y = h(z) et
communique y & Bob (Bob ne peut pas retrouver x a partir de y car h est a sens unique).

2. Bob choisit son bit aléatoire b € {0,1} et Pannonce & Alice.

3. Alice déclare qui a gagné suivant que x € X3 ou non : elle prouve sa bonne foi en révélant z.

7.5 Fonction de hachage MD5

La premiere fonction de hachage cryptographique a été est développée par RSA Security, Inc,
nommée MD (message digest) propriétaire et jamais publiée. Par contre la version MD2 a été publiée
et la premiere fonction de hachage largement utilisé.

Quand Merkle en 1990 a proposé SNEFRU qui était beaucoup plus rapide que MD2, RSA Security,
Inc a répondu par MD4. MD3 a été développée mais jamais publiée ou utilisé. SNEFRU a été attaqué
en 1991 par la cryptanalyse différentielle. MD5 est venu pour combler certaines failles découverte dans
MD4, considéré actuellement non sécurisé. MD5 est 1égerement moins rapide que MD4. Depuis 2004,
MD?5 est considéré partiellement cassé, car il est connu que la fonction de compression qu’utilise admet
des collisions. MD5 n’est plus considérée comme sir aujourd’hui.

L’algorithme de hachage MD5 (Message Digest Algorithm) a été développé par Ron Rivest en
1991. C’est une version renforcée de MD4 (1990) pour étre plus rapide sur les machines 32 bits. Elle
prend en entrée un message de longueur arbitraire et produit en sortie une empreinte de 128 bits.

Congue pour les processeurs 32 bits.
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<« 1 a 512 bits, . 64 bits,
‘ message original ‘ 10...0 ‘ (0)64 ‘

~—— = 448 mod 512
multiple de 512

FIGURE 7.6 — Padding de la fonction de hachage MD5

Une faille a été trouvée en 1996 et des collision trouvées en quelques heures en 2004. Elle est encore

largement utilisée en pratique. Mais a éviter !

Notations : 74" denote I'addition de mots (mots=32 bits) modulo-232.
XAY : X and Y (bit a bit).

X VY : X orY (bit a bit).

XaY : X xorY (bit a bit).

X : complement de X (bit & bit).

X <> s : décalage circulaire a gauche de X par s positions (0 < s < 31).

Fonctions primitives : On définit 4 fonctions, dites primitives, dont les arguments sont des mots

de 32 bits et produisent des mots de 32 bits aussi.

f(X,)Y,2)=(XAY)V(XAZ)
g X, Y, Z)=(XANZ)V (Y NZ)
XY, Z)=XaeYaoZ
i(X,Y,Z)=Y ®(XVZ)

_ o= e RO OO O
—_ = 0 O = = o o
— O = O k O — O|N
— = O O = O R O
_ O O Rk O R Rk O
O O = =k RO O |~

_ = R O O R O Ol

TABLE 7.1 — Table de vérité des fonctions f, g, h,1

TableauT' MD?5 utilise un tableau 7" de 64 éléments ou T'[7] est le ¢ élément : T'[i] = [4294967296|sin(7)|]
ot1 [ ] désigne la partie entiere et i est en radians. Puisque 4294967296 = 232 chaque élément de T peut
étre représenté sur 32 bits.

MD5 se fait en cinq étapes :
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lalBlc|p]|

FIGURE 7.7 — Fonction 7?7 ? de hachage MD5

M; (512 bits) H; (128 bits)

Ay BV Cy D
fa T[la"'716]’ X[Z]
16 opérations

Al Bl C| D
f, T[13,---,32], Xi]
16 opérations

Al B| C| D
16 opérations

Al B}l Cl D
16 opérations

Hipq (128 bits)

F1GURE 7.8 — Fonction de hachage MD5
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Groupe t | tour j Constante K; | Fonction f;
1 0---19 | K4= f1(B,C,D) =
2 20---39 | Ko= f2(B,C, D) =
3 40---59 | K3= f3(B,C,D) =
4 60---79 | Ky= fa(B,C,D) =

TABLE 7.2 — Fonctions et constantes dans SHAL.

Premiére étape : padding Soit un message M de longueur ¢ < 264 bits. On complete & droite M
par un 1, et suffisamment de 0 pour que le message étendu ait une longueur congruente a 448, modulo

512. Cette opération est faite méme si £ est déja congru a 448 mod 512.

Deuxiéme étape : appending Puis on ajoute a ce message la valeur de ¢, codée en binaire sur 64
bits. Si ¢ > 264, les 64 bits & gauche sont utilisés. On obtient donc un message M dont la longueur
totale est un multiple de 512 bits, ou encore multiple de 16 mots (1 mot =32 bits)

Soit M = M]0]--- M[N — 1] le message obtenu, ou chaque M [i] désigne un mot (32 bits). Puisque
la longueur de M est multiple de 512, N est divisible par 16.

On va travailler itérativement sur chacun des blocs M|i]

Troisieme étape : Initialisation On considére les valeurs initiales suivantes qui sont des mots de

32 bits chacun écrit en hexadécimal.

: 01 23 45 67 ;
: 89 ab cd ef ;
: fe dc ba 98 ;
76 54 32 10 .

O Q w =

Quatrieme étape : calcul itératif Traitement des blocs
For i = 0 to N/16-1 do
/* Copier le bloc i dans X. */

For j = 0 to 15 do

Set X[j] to M[i*16+j].

end fin de la boucle j

/* Affecter A 3 AA, B 32 BB, C 2 CC, et D & DD. */

AA = A
BB =B
cC=¢C
DD =D
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Tour 1.

(voir Figure [[7)) faire les 16 opérations :

[ABCD 0 7 1]

[ABCD 7 5]

[ABCD 8 7 9]

[ABCD 12 7 13]
Tour 2.

[DABC 1 12 2]
[DABC 5 12 6]
[DABC 9 12 10]

[CDAB 2 17 3]
[CDAB 6 17 7]
[CDAB 10 17 11]

[BCDA 3 22 4]
[BCDA 7 22 8]

Soit [ABCD k s j] dénote l'opération A = B+ ((A+ f(B,C,D) + X[k] + T[j]) + s),

[BCDA 11 22 12]

[DABC 13 12 14]

Figure [77) faire les 16 opérations :

[ABCD

1

[ABCD 5
[ABCD 9
[ABCD 13

Tour 3.

5 17]
5 21]
5 25]
5 29]

[DABC 6
[DABC 10
[DABC 14
[DABC 2

9 18]
9 22]
9 26]
9 30]

Figure [[7)) faire les 16 opérations :

[ABCD 5

[ABCD

1

[ABCD 13
[ABCD 9

Tour 4.

4 33]
4 37]
4 41]
4 45]

[DABC
[DABC
[DABC
[DABC

8 11
4 11
0 11
12 11

34]
38]
42]
46]

[CDAB 14 17 15]

[BCDA 15 22 16]

[CDAB 11 14 19] [BCDA 0 20 20]
[CDAB 15 14 23] [BCDA 4 20 24]
[CDAB 3 14 27] [BCDA 8 20 28]
[CDAB 7 14 31] [BCDA 12 20 32]

[CDAB 11 16 35]
[CDAB 7 16 39]
[CDAB 3 16 43]
[CDAB 15 16 47]

[BCDA 14 23 36]
[BCDA 10 23 40]
[BCDA 6 23 44]
[BCDA 2 23 48]

Soit [ABCD k s j] dénote 'opération A = B+ ((A+¢g(B,C, D)+ X[k] +T[j]) + s), (voir

Soit [ABCD k s j| dénote l'opération A = B+ ((A+h(B,C, D)+ X[k]|+T[j]) < s), (voir

Soit [ABCD k s j] dénote l'opération A = B + ((A+i(B,C,D) + X[k] + T[j]) + s),
(voir Figure [[7)) faire les 16 opérations :

[ABCD O
[ABCD 12
[ABCD 8

[ABCD 4

6 49]
6 53]
6 57]
6 61]

[DABC 7 10
[DABC 3 10
[DABC 15 10
[DABC 11 10

50]
54]
58]
62]

Faire les additions suivantes :

O Q w =
oo

U o w =

+ o+ o+ o+

Fin

AA
BB
cc
DD

de la boucle i

15 51]
15 55]
15 59]
15 63]

[CDAB 14
[CDAB 10
[CDAB 6
[CDAB 2

[BCDA 5 21 52]
[BCDA 1 21 56]
[BCDA 13 21 60]
[BCDA 9 21 64]
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< k+1 bits _, . 64 bits,
‘ message original ¢ bits ‘ 10...0 ‘ (0)64 ‘

~—— = 448 mod 512
multiple de 512

F1GURE 7.9 — Padding de la fonction de hachage SHA1

Cinquiéme étape Le haché est produit comme A, B, C D

7.6 Fonction de hachage SHA-1

SHA-1 (Secure Hash Algorithm 1), comme MD5, est basé sur MD4. (donc sur la construction
de Merkle-Damgard). Son fonctionnement tres similaire & MD5. Mis au point et publié en 1993 par
Pagence de sécurité nationale américaine (NSA). C’est un standard officiel aux US pour usage avec le
schéma de signature DSA depuis 1995 et jusqu’en 2012.

L’algorithme SHA-1 traite par blocs de 512 bits et produit une empreinte de 160 bits en sortie. 11
s’effectue en 80 tours qui sont divisés en 4 groupes . Le SHA-1 traite les messages d’au plus 264 bits
en entrée.

SHA-1 a été cassé en février 2005 par Wang, Yin et Yu, qui ont montré que des collisions pouvaient

209 essais au lieu de 280, Puis 263 d’apres des travaux récents, ce qui rend SHA-1 plus

étre trouvées en
vulnérable.

SHA-2 est destiné a remplacer SHA-1. Les différences principales résident dans les tailles de hachés
possibles 256, 384 ou 512 bits, qui sont désignés respectivement par SHA256, SHA384 ou SHA512
bits. En février 2004, le NIST a introduit SHA-224. SHA-224 est identique & SHA-256, mais utilise
des valeurs initiales différentes et tronque le haché final en prenant les 224 bits a gauche.

1) Padding : Complément de M. Soit M un message de longueur ¢ bits. On ajoute le bit 71”7 a la
fin du message M, puis k zéros, ou k € N* est tel que : £ + 1 + k = 448 mod 512. L’ajout de 1 se fait
méme si £ = 448 mod 51.

Puis on ajoute ¢ écrit en binaire sur 64 bits.

2) Division du paddé : découper le message complété en blocs de 512 bits Le message complété
est découpé en n blocs de 512 bits, notés My, Mo, --- , M. Chaque bloc M; est ensuite découpé en 16
mots de 32 bits, notés M; = (Mi(o),MZ_(l)’ oo, M), ot les Mi(k) sont des mots de 32 bits.

Initialisation des variables

Les cinq variables suivantes sont affectées de valeurs initiales : (les 4 premiéres sont les mémes que
dans MD4 et MD5)

— A=H" = 0x67452301

— B = Ho(l) = Oxefcdab89

— C = H(§2) = 0x98badcfe

— D = HY = 0x10325476

— E = H" = 0xc3d2el0
et Hy = Héo)Hél)HSQ)Hés)Hé4) de longueur 160 bits.
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H; consiste en 5 mots de 32-bit HZ.(O),Hi(l),Hi(Q),Hi(?’), HZ.(A‘)
H,, est le haché.

Les M; sont traités dans I'ordre et chaque bloc M; subit un traitement de 80 tours, comme montré
par la Figure [.10.
On construit 80 mots de 32 bits chacun W; si 0 < j < 79, pour chacun des 80 tours.
MY 0<j<15
Wy =4 i =J= (7.3)
(Wj73 OW; s®W;_14® ijlﬁ) ~—1, 16<t<T79

Les quatre groupes de tours ont méme structure mais utilisent différentes fonctions f; et constantes
K; ou 1 <t <4. Chaque groupe est composé de 20 tours.
Notations :
A = opération binaire AND |
V = opération binaire OR,
@ = opération binaire XOR,
X = complément binaire de X,
B= addition modulo 232,
x < s = décalage circulaire a gauche de s bits ou 0 = s < 31.
Fonctions utilisées lors du calcul des valeurs de hachage. SHA-1 utilise une succession de fonctions
logiques fo, f1,: - , fr9. Chaque fonction f;, ou 0 < ¢ < 79, opere sur trois mots de 32 bits, z,y, z et

génere un mot de 32 bits en sortie. La fonction f; est définie comme suit :

ChX,Y,Z)=(XAY)® (X AZ), si0<t<19
Parity( X, Y, Z) =X Y & Z, si20 <t <39
fix.y.z) = Lermioy. ) | (7.4
Maj(X,Y,Z) = (XAY)®(XAZ)D(Y NZ), sid0<t<59
Parity(X,Y,Z2) =X oY @ Z, si60 <t <79

x y z|Ch Parity Maj
0 0 0] O 0 0
0 0 1] 1 1 0
0 1 0] O 1 0
0 1 1 1 0 1
1 0 0] 0 1 0
1 0 1] 0 0 1
1 1 0 1 0 1
1 1 1 1 1 1

TABLE 7.3 — Table de vérité des fonctions Ch,Parity et Maj
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Table de vérité des fonctions utilisées dans SHA-1 SHA-1 utilise 80 constantes notées Ky, K1, ..., K79

et définies par :

2301/2] = 0x5a827999, si0<t <19

[
[2304/3] = Ox6ed9ebal, si20 <t < 39
[
[

K, = 7.5
! 230,/5] = 0x8flbbede, i 40 < t < 59 (7:5)
2391/10] = Oxca62c1d6, si60 <t <79
L’opération dans le tour 5 du groupe t est donné par :
A, B,C,D,E = (E+ f(B,C,D)+ (A) <5+ W; + K;),A,(B) «+ 30,C,D (7.6)

Voir Figure [Z.11]
SHAT1 est formé de 4 groupes de tours :

Groupe 1 formé des 20 premiers tours ou on utilise la fonction f1, la constante K; et les mots
Wo, - - Who.

Groupe 2 formé des 20 tours qui suivent ot on utilise la fonction fs, la constante K et les mots

Wag, -+ - Wag.

Groupe 3 formé des 20 tours qui suivent ou on utilise la fonction f3, la constante K3 et les mots
Wao, - - Who.

Groupe 4 formé des 20 derniers tours ou on utilise la fonction f4, la constante K4 et les mots

Weo, - - - Wrg.

Algorithme SHA-1
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M; 520 bits H;_1 160 bits
génératio
des W;
Wo -+ Whg Groupe 1 (20 tours)
f1, K1, Wjj=1..19
Wag - - Wig Groupe 2 (20 tours)
J2, Ko, Wjj=20..39
Wao - - - Whso Groupe 3 (20 tours)
I3, K3, Wjj=40..59
Weo - -- Wro Groupe 4 (20 tours)
fa, K4, Wj j=60...79
it
H
H
(]
Elj
H;
F1GURE 7.10 — Fonction de hachage SHA1
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A|B|C|D

—He—H—

—W;

>§( Kt

A|lB|C|D|FE

F1cURE 7.11 — Tour j du groupe t dans SHA1

message m = mgimy - - Mg_1
Construct M = M[O|M[1]--- M|N —1]
A +— 0267452301
B +— Oxefcdab89
C +— 0z98badcfe
D «— 0210325476
E +— 0xc3d2el f0
fori=0to N do
PreparerW
A+— A
B<+— B
C+—C
D+—D
E+—F
fort=0to 79 do
T+ (A5 + fi(B,C,D) + E+ K, + W,
E<+—D
D+—C
C+— B+ 30
B+— A
A+—T
A+— A+ A
B+—B+B
C+—C+C
D+«—D+D
EFE+—F+FE
(h(M) = ABCDE)
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Calcul de 'empreinte
On traite successivement les N blocs de M comme il suit :
Pouri=1,--- N

2) On initialise a, b, c,d et e avec les valeurs de hachage du tour précédent

— a= Héiil)
— b=pgY
— c= Héi_l)
— d=H{"
— e= Hiiil)

3) Pour t =0,---,79
— T = ROTL%(a) + fi(b,c,d) + e+ K; + W,

—e=d
—d=c
— ¢ = ROTL*(b)
—b=a
—a=T

4) Calcul des valeurs de hachage intermédiaires
— Hy(i)=a+H™
— Hy(i)=b+ H!

— Hy(i) =c+ HJ™!

— Hy(i)=e+ H{"
Apres répétition des quatre étapes ci-dessus pour les IV blocs du message M, le condensé de 160

bits de M est obtenu par concaténation des valeurs

HO(N),H£N),H§N),H?(’N),H£N)

Méthode 1 Le résumé de message est calculé en utilisant le message bourré comme décrit a la
section 4. Le calcul est décrit avec I'utilisation de deux mémoires tampon, chacune consistant en cinq
mots de 32 bits, et une séquence de quatre vingt mots de 32 bits. Les mots de la premiere mémoire
tampon de cinq mots sont étiquetés A, B, C, D, E. Les mots de la seconde sont étiquetés Hy, Hy,
H,, Hs, Hy. Les mots de la séquence de 80 mots sont étiquetés W (0), W(1),..., W(79). Une mémoire
tampon TEMP d 7un seul mot est aussi employée. Pour générer le résumé de message, les blocs M (1),
M (2),..., M(n) de 16 bits définis a la section 4 sont traités dans cet ordre. Le traitement de chaque
M(i) implique 80 étapes. Avant de traiter un bloc, les H sont initialisés comme suit, en hexadécimal :
HO = 67452301 H1 = EFCDABS89 H2 = 98BADCFE H3 = 10325476 H4 = C3D2E1F0.

Ensuite M (1), M(2),--- ,M(n) sont traités. Pour traiter M (i), on procede comme suit :

a. Diviser M (i) en 16 mots W (0), W(1),--- ,W(15), ou W(0) est le mot le plus a gauche.

b. Pour 167 t?7 79 soit

W(t) = S*(W(t —3)OUXW (t — 8)OUXW (t — 14)OUXW (t — 16))
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c. Soit A = HO, B=H1, C = H2, D = H3, E = H4.

d. Pour 07 t? 79 faire TEMP = S°5(A) + £(t;B,C,D) + E + W(t) + K(t); E =D; D = C;
C=8"30B); B=A; A=TEMP;e.

Soit HO = HO + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E. Apres le traitement
de M(n), le résumé de message est la chaine de 160 bits représentée par les 5 mots HO H1 H2 H3 H4

7.7 SHA-1 vs MD5

- lattaque par force brute est plus difficile (160 contre 128 bits pour MD5)
- non vulnérable & toutes les attaques connues (comparées a MD4/5)

- un peu plus lent que MD5 (80 contre 64 étapes)

Fonction | Empreinte | Complexité | Résistance aux Compléxité
requise collisions de l'attaque
MD5 128 bits O(254) Cassé [Sasaki al.05] 0(23)
SHA-1 160 bits O(280) Cassé (Crypto05 - Wang al.]) 0(25%)
HAVAL | 256 bits O(2128) | Cassé (Asiacrypt 04) 0(219)
SHA-256 | 256 bits O2!%) | Sir
Whirlpool | 512 bits 0(2256) Sir

TABLE 7.4 — Comparaison de fonctions de hachage

fonction taille du taille du empreinte | nombre | année
Bloc en bits | mot en bits | en bits de Tours
MD4 512 32 128 48 1990
MD5 512 32 128 64 1992
SHA-0 512 32 160 80 1993
SHA-1 512 32 160 80 1995
SHA-224 | 512 32 224 64 2004
SHA-256 | 512 32 256 64 2002
SHA-384 | 1024 64 384 80 2002
SHA-512 | 1024 64 512 80 2002
Whirlpool | 512 - 512 10 2003

TABLE 7.5 — Fonctions de hachage standards

7.8 conclusion

SHA-3 est un appel a candidature du NIST

61 candidats soumis en octobre 2008. 51 propositions acceptes (les autres étant incomplets).
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- pour 'instant 10 candidats déja cassés, et une dizaine d’autres "blessés’.
- il reste une trentaine de candidats potentiellement finalistes.

- 3 ou 4 candidats ’stars’ (équipe renommée, algorithme médiatisé, etc.)
- 5 retenus.

Fonctions de hachage basées sur des chiffrements par blocs

7.9 Exercices

Exercice 1. Soit f : F3™ — FJ* une fonction de hachage et h une deuxiéme fonction de hachage
définie par :
h: F3m  — Fg

willze —  f(f(z1)]|f(22))

ou || désigne 'opération de concaténation. Montrez que si f est résistante aux collisions, alors h est

aussi résistante aux collisions.

Exercice 2. Soit une fonction de hachage h : {0,1}* — {0,1}™.
Montrer que la recherche exhaustive de collisions a plus d’une chance sur deux d’aboutir apres seule-
ment O(27).

Exercice 3. Les systemes d’authentification usuels vérifient les mots de passe a I'aide de leur haché
stocké dans des fichiers protégés.

1. Quelle est I'utilité de stocker les hachés des mots de passe plutot que les mots de passe eux-
mémes ?

2. Pourquoi doit-on protéger I'acces aux hachés des mots de passe ?

3. Sous quelle condition cette précaution ne serait-elle pas nécessaire ?

Exercice 4. Indiquer pour chacune des fonctions suivantes (i) si elles sont a sens unique; (ii) si elles
sont résistantes aux collisions.

- hi(z) = 2®*modp pour p premier de 1024 bits;

- ha(z) = 2®*modn pour n = pq , avec p et ¢ deux nombres premiers de 512 bits;

- h3(z) = 3*modp pour p premier de 1024 bits.

Exercice 5. Soit p = 1 4+ 2¢ un grand nombre premier tel que g soit aussi premier. Soit « et 8
deux éléments primitifs de Z . La valeur de log, 8 n’est pas publique et I'on suppose qu'elle est
calculatoirement difficile & obtenir.

a) Montrer que la fonction de hachage

hi ZyxZg— T
(x1,x9) —> ™1 372

résiste aux collisions si le calcul de log, B est difficile.

b) Que pensez vous de cette fonction de hachage ?

Master C2SI - 2023-24 Introduction a la cryptographie E. M. Souidi



Bibliographie

[1] Menezes A. J., Vanstone S. A. and Oorschot P. C. V., Handbook of Applied Cryptogra-
phy, Computer Sciences Applied Mathematics Engineering, CRC Press, Inc., 1st edition, 1996,

http ://www.cacr.math.uwaterloo.ca/hac/

[2] Schneier B., Cryptographie Appliqué Vuibert, Wiley and International Thomson Publishing, NY,
2nd edition, 1997. http ://www.schneier.com/book-applied.html

[3] Stinson D.R, Cryptography : Theory and Practice, Chapman & Hall/CRC Press, 2nd edition,
2002. http ://www.cacr.math.uwaterloo.ca/ dstinson/CTAP2/CTAP2.html

[4] Rolf Oppliger, Contemporary Cryptography, ARTECH HOUSE, INC. 2005.

[5] I. Damgard. A Design Principle for Hash Functions. Advances in Cryptology — CRYPTO’89,
Lecture Notes in Computer Science Vol. 435, G. Brassard ed., Springer-Verlag, 1989.

[6] R. Merkle. One way hash functions and DES. Advances in Cryptology — CRYPTO’89, Lecture
Notes in Computer Science Vol. 435, G. Brassard ed., Springer-Verlag, 1989.

R. Rivest, The MD5 message-digest algorithm. IETF RFC 1321 (April 1992).

CONES)

http ://www.fags.org/rfes/rfc3174.html
http ://abcdrfe.free.fr/rfc-vf/pdf/rfc3174.pdf

103



	Introduction à la cryptographie
	Définitions
	Les principaux crypto-systèmes
	Cryptographie à clé privée 
	Cryptographie à clef publique

	La cryptanalyse
	Attaque sur le texte chiffré connu
	Attaque à texte clair connu
	Attaque sur un texte clair choisi
	Attaque sur le texte chiffré choisi

	Algorithme publié et algorithme secret
	Algorithme secret
	Algorithme publié
	Principe de Kerckhoffs

	Quelques crypto-systèmes historiques
	Chiffrement par décalage
	Chiffrement affine
	Chiffrement par substitution
	Chiffrement de Vigenère
	Chiffrement de Hill (1929)
	La machine ENIGMA
	Masque jetable (One time pad)
	Chiffrement par permutation (transposition)
	Le carré de Polybe 
	Cryptanalyse des crypto-systèmes monoalphabétiques

	Modes de chiffrement par bloc
	Le mode ECB (Electronic CodeBook)
	Le mode CBC (Cipher Block Chaining)
	Le mode OFB (Output FeedBack) 
	Le mode CFB (Cipher FeedBack)
	Le mode CTR (Counter-mode encryption)

	Cryptographie symétrique et asymétrique
	Signatures numériques
	Stéganographie
	Exercices

	DES (Data Encryption Standard)
	Introduction
	Ingrédients
	La permutation IP et son inverse IP-1
	L'expansion E
	Les S-Box
	La permutation P
	La fonction f
	Les transformations PC1 et PC2
	Les rotations circulaires LSi, i=1,@汥瑀瑯步渠, 16 

	Diversification de la clé
	Étapes de chiffrement
	Déchiffrement
	Controverse
	Attaques de DES
	3DES
	Schéma de Feistel
	Exercices

	IDEA
	Introduction
	Séquencement de la clé 
	Description de IDEA
	Déchiffrement
	Sécurité de IDEA

	AES: Advanced Encryption Standard 
	Outils mathématiques 
	Représentation polynomiale et hexadécimale des octets 

	Présentation du bloc à chiffrer et de la clé
	Opération de l'algorithme AES
	L'opération AddRoundKey
	L'opération SubBytes 
	Opération ShiftRows
	Opération MixColumns 

	Description de l'AES
	Dérivation de clés de tour
	Evaluation de l' AES
	Exercices

	Cryptographie à clef publique : RSA 
	Description de RSA
	Outils mathématiques
	Indicatrice d'Euler
	Description de RSA

	Démonstrations mathématiques
	Démonstration
	Inversion modulo (p-1)(q-1)
	Algorithme d'Euclide étendu
	Calcul des puissances modulo n
	 Tests probabilistes de primalité

	Remarques sur RSA
	Attaques
	Sécurité
	vitesse de RSA

	Exemple d'application de RSA
	Exercices
	Théoreme de Fermat
	Méthodes de factorisation
	Le crible d'Eratostène
	La méthode de Fermat
	La méthode p - 1 de Pollard
	La méthode  de Pollard
	La méthode du crible quadratique de Pomerance
	La méthode GNFS

	Résolution du problème du logarithme discret
	Méthode naïve
	Méthode Baby Step Giant Step de Shanks
	Méthode  de Pollard
	Méthode de réduction de Pohlig-Hellman
	Méthode de calcul d'indices

	Exercices

	Cryptographie à clef publique : ElGamal
	Description de ElGamal
	Remarques
	Exercices

	Fonction de Hachage
	Définitions
	Paradoxe des anniversaires

	Construction de fonctions de hachage
	Construction de Merkle-Damgård
	Construction de Davies-Meyer
	Construction de Matyas-Meyer-Oseas
	Miyaguchi-Preneel

	Applications des fonctions de hachage : MDC et MAC
	Construction HMAC 

	Preuve sans transfert de connaissance
	Fonction de hachage MD5
	Fonction de hachage SHA-1
	 SHA-1 vs MD5
	 conclusion
	Exercices


